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Abstract

Quantitative Electroencephalogram (QEEG) and EEG source localization 
were used to describe the patho-physiological nature of brain dysfunction 
in children with Attention Deficit Hyperactivity Disorder (ADHD) or Autism 
Spectrum Disorder (ASD). QEEG frequency analyses revealed 4 subtypes that 
differed both in severity of abnormality and relative frequency of occurrence in 
both disorders but do not clarify distinctive neural networks associated within 
each of the disorders. Multivariate discriminant analyses proved to be effective 
in discriminating clinical groups from normal and from each other with high 
levels of sensitivity and specificity. EEG source localization indicted that ADHD 
was characterized by functional abnormality within the thalamus, hippocampus, 
caudate nucleus, and anterior cingulate, frontal/striatal, temporal, and parietal 
regions bilaterally and ASD by functional abnormality within the thalamus, 
hippocampus, caudate nucleus, and posterior cingulate, supramarginal gyrus, 
lateral and medial occipital/temporal, superior parietal, and occipital cortical 
regions bilaterally.
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diagnosis of children with learning disorders and those with various 
subtypes of attention deficit disorder [1]. 

Variable Resolution Electromagnetic Tomography (VARETA) 
is a 3 dimensional source localization method that uses surface 
recorded EEG to analyze current density and to identify the most 
probable neuro-anatomical generators of each EEG frequency band. 
The results of these analyses can be used to generate maps based 
upon a probabilistic brain atlas resembling slices obtained from a 
Magnetic Resonance Image (MRI) [6]. When z-score transformed 
relative to a normal population these VARETA brain images can 
be used to depict the cortical and sub-cortical structures involved 
in the pathophysiology of various neuro-cognitive disorders. The 
VARETA technique has been shown to be useful in the identification 
of the neuro-anatomical structures involved in; (1) epileptic activity 
generation [7,8], (2) hypoperfused regions due to neurocysticercosis, 
reversible ischemic attacks, and cerebral artery disease [6,9,10], (3) 
space occupying lesions [11,12], (4) the localization of cognitive 
processes [13], obsessive-compulsive disorder [14], and attention 
deficit disorder [15].

The present study was designed to document QEEG differences 
between large samples of children diagnosed with ASD, ADHD, 
and a matched sample of children with no known neurological or 
psychiatric disorders. The goal was to document the specific types 
of QEEG profiles found within these populations and to develop 
QEEG feature based discriminant functions (possible biomarkers) 
to distinguish children with ASD and those with ADHD from the 
normal population of children as well as from each other. VARETA 
was utilized to identify the neuro-anatomical structures that underlie 
the pathophysiology of the childhood syndromes of ASD and ADHD 

Background
Attention Deficit Hyperactivity Disorder (ADHD) and Autistic 

Spectrum Disorder (ASD) are two neurodevelopmental disorders 
which at various times in the past 40 years have been described 
as being epidemic in their scale amongst childhood psychiatric 
disorders. Both disorders occur early in childhood and can have 
extreme effects on the lives of these children. ADHD is characterized 
by symptoms of inattention, impulsive behavior, and varying degrees 
of hyperactivity which often result in problems in learning, cognition, 
and social interactions. Autistic spectrum disorder is characterized by 
deficits in social interaction and communication often accompanied 
by repetitive behavior and dysfunction in executive function, 
language, and emotional behavior. ASD individuals can also exhibit 
impaired attention regulation processes such as distractibility or at 
other times significant problems with hyper-focusing and difficulty 
in shifting their attention as needed. While several recent studies have 
documented the neuro-physiological and neuro-anatomical nature 
of these disorders [1,2], there are no published studies that examine 
the similarities and differences between the brain structures and 
neurological functions compromised within each if these disorders 
and a set of heuristics that can help provide the discriminability of 
these disorders

Quantitative EEG (QEEG) is a valuable technique used in the 
diagnosis and treatment of children and adults with psychiatric 
and neurological disorders [3,4]. The clinical utility of QEEG 
in child and adolescent psychiatric disorders including autism, 
specific developmental disorders, and attention deficit disorder has 
been documented [5]. QEEG is useful for aiding in the differential 
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and to identify any neurophysiological subtypes that exist within each 
disorder. We also identify the cortical and subcortical regions that 
generate abnormal activity within each disorder and then localize 
the anatomical differences between the two disorders. Collaborative 
evidence supporting our findings will be provided by reviewing the 
findings from brain structural imaging studies (MRI, fMRI, PET) of 
these two disorders.

Method
Normal population

A sample of 92 normal children from the NYU database of normal 
children was selected to match the age and sex distributions of our 
sample of ASD and ADHD children. All normal subjects were free of 
neurological or medical disease, had no history of head injury, drug 
or alcohol abuse, were of normal IQ, showed evidence of adequate 
functioning at home/school for the past two years, and had not taken 
any prescription medication for at least 90 days prior to evaluation. 
Specific details of the procedures used to establish the normal data 
base have been previously published [16]. The reliability of this 
normal data base has been validated using independent samples of 
normal individuals [17-22]. This replication of the age-regression 
equations developed on the above data base justifies their generalized 
application [23].

Clinical populations
All Autistic Spectrum Disordered (ASD) children used in this 

study were referred to the Neurodevelopment Center in Providence 
Rhode Island or the Neurorehabilitation and Neuropsychological 
Center in Massapequa, New York. All ADHD children were 
referred to the Developmental Pediatrics and Learning Disorders 
Clinic in Sydney, Australia. Samples of 92 children were entered 
into this study from each of these clinical groups. All children were 
examined by a neuropsychologist and had a neuropsychological and 
QEEG evaluation. Children with histories of epilepsy, drug abuse, 
head injury, or psychotic disorders were excluded. The clinical and 
neuropsychological evaluations obtained on each child were those 
tests routinely administered at each outpatient clinic. None of 
children used in this sample, were on any medications. 

The demographic information from these samples is shown 
in Table 1 indicating no significant differences between groups in 
terms of age or sex. None of the children used in this sample were 
on medication at the time of QEEG testing. An additional 14 ASD 
children had QEEG evaluations while on medication and these 
children were used to test for general medication effects on the QEEG.

Quantitative EEG (QEEG) methodology
The neurometric method of QEEG data collection and analysis 

was utilized. The EEG power at each frequency, recorded from 19 
electrodes located on the scalp in compliance with internationally 
standardized procedures, is subjected to visual editing to remove 
artifactual contamination by non-cerebral sources such as movements 
and then subjected to computer analysis to extract a wide variety of 
descriptive measures. The measures are grouped by broad frequency 
bands, into which the EEG is conventionally divided: delta (1.5-3.5 
Hz), theta (3.5-7.5 Hz), alpha (7.5-12.5 Hz), and beta (12.5-25 Hz). 
For each broad band frequency band, univariate measures were 
derived for: 1) absolute power; 2) relative power; 3) interhemispheric 
and intrahemispheric power asymmetry; and 4) interhemispheric 
and intrahemispheric coherence. Additionally, measures for 
various multivariate regional absolute power, relative power, power 
asymmetry, and coherence measures across the frequency spectrum; 
and multivariate measures collapsed across all frequency ranges were 
derived. The interested reader is referred to several published papers 
for a detailed description of this technique and the development of 
the normal EEG database [22,24,25]. 

All ADHD and ASD children were seated comfortably in a sound 
and light attenuated room during the evaluation. Electrode caps 
were used to place recording electrodes over the 19 standard regions 
defined by the International 10/20 system referenced to linked ears. 
All electrode impedance levels were kept below 5000 ohms. Twenty 
to thirty minutes of continuous eyes closed resting EEG was recorded 
using a Spectrum 32 (ADHD) or Deymed (ASD) EEG system. An 
experienced EEG technician observed the continuous EEG being 
recorded and selected from 1 to 2 minutes of artifact-free EEG 
for further analysis. All EEG was digitized and placed onto CDs 
for entry into a computer for subsequent quantification. Prior to 
EEG quantification, all EEG was examined by one of the authors 
who removed artifact contaminated epochs missed by the first 
technician. Particular care was taken to prevent EEG contamination 
due to drowsiness, and to exclude EEG segments contaminated by 
horizontal and lateral eye-movement, muscle activity, ECG artifact, 
or by EEG transients due to sharp waves or paroxysmal activity. 
EEG quantification was restricted to those children from whom a 
minimum of one minute of artifact-free EEG (24 epochs) could be 
obtained. Prior research has shown that this is the minimum amount 
of EEG required to obtain reliable quantitative EEG measures [26]. 
The artifact free EEG segments were read into the Nxlink software 
for quantification. This software converts the Deymed and Spectrum 
32 EEG segments to meet the amplifier and frequency characteristics 
under which the normal database was collected and to equivocate 
digitized information collected from the different amplifier systems. 
The artifact-free EEG from each channel was then converted from the 
time to the frequency domain via Fast Fourier Transform (FFT). Each 

Normal Kids
ASD ADHD

F value P value
Mean (SD) Range Mean (SD) Range

Age: 9.98 (2.98) 6-17 10.01 3.3 6-17 10.03 3.1 6-17 0.1 <.99

VIQ: WNL 97.0 9.4 73-118 90.9 18.0 44-136 3.5 <.06

PIQ: WNL 97.8 9.5 74-126 92.7 17.0 46-136 16.2 <.0001

IQ: WNL 99.2 9.7 85-127 89.8 15.6 53-130 14.4 <.0002

Sex 92 males; 13 females 92 males; 13 females 92 males; 13 females

Table 1: Table showing findings for matching samples on age, sex and IQ.
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QEEG measure was compared to the mean and standard deviation of 
that measure obtained from the age-regressed normal database using 
a Z or standard score. 

The VARETA technique
In the last few years a new method for localizing electrical activity 

in the brain, called Variable Resolution Electromagnetic Tomography 
(VARETA), has been developed. This imaging technique allows an 
estimation of the distribution of the electrical generators for each 
frequency band within the brain, by applying a mathematical inverse 
solution to the EEG data. The anatomical definitions of regional 
probability for source localization used in VARETA are derived 
from a Probabilistic Brain Atlas (PBA) developed at the Montreal 
Neurological Institute [27]. Use of the PBA obviates the need for 
individual MRI scans, in exchange for sacrificing precise anatomical 
localization. Three-dimensional coordinates for the position of 
each scalp electrode position, defined by the proportional 10/20 
International Electrode Placement System, have been published [28]. 
These coordinates were used to project each electrode position onto 
the average surface of the mean dimensions of an age appropriate 
head, thus placing the proportional EEG electrode set into spatial 
registration with the proportional PBA. Based on this EEG-MRI head 
model, the problem of the 3-D sources of EEG may be specified in 
the frequency domain [6,29,30]. Resting, eyes closed EEGs from the 
normal population, constituted a normative database for VARETA 
using narrow band spectral analysis between 0.39 Hz to 19 Hz in 
increments of 0.39 Hz [31]. Using the resulting set of normal values 
for narrow band spectral power at each scalp electrode [29,32], the 
sources of power at each frequency were localized. Three-dimensional 
color-coded tomographic images were then generated, with source 
generator distributions superimposed upon the transaxial, coronal, 
and sagittal slices color-coded as z-score deviations from the normal 
population. The VARETA method is a useful adjunct to QEEG 
analysis. It provides additional information about the localization 
of the abnormal sources of surface electrical activity. Nevertheless, 
VARETA, like other inverse methods, presents some limitations: 
it represents an approximate solution for the most probable 
neuroanatomical generators. However studies have demonstrated the 
spatial resolution of such imaging techniques is with 5 mm consistent 
with MRI imaging for specific locations. 

Results

QEEG discriminant analysis findings
A series of step-wise discriminant analyses were calculated 

comparing the normal children with ASD children, the normal 
children with the children with ADHD, and the ASD and ADHD 
children with each other. QEEG variables entered were selected 
using analysis of variance comparisons between the two groups with 
those variables with the highest F-ratios and lowest inter-correlations 
chosen. A total of 5 variables were used to discriminate the normal 
from the ADHD children with a sensitivity of 93.3%. A specificity of 
88.6% with Positive Predictive Validity (PPV) of 89.1% and Negative 
Predictive Validity (NPV) of 93.0%. Variables utilized included delta 
and theta relative power and frontal coherence measures. A total of 
5 variables were utilized to discriminate the normal from the ASD 
children with 92.3% sensitivity and 95.6% specificity. The positive 
predictive value was 95.5% and the negative predictive value was 
92.6%. QEEG variables utilized included delta mean frequency, theta 
coherence, delta relative power, frontal/temporal alpha asymmetry, 
and frontal/temporal theta relative power. A total of 4 variables 
were used to discriminate the ASD from the ADHD children with 
82.9% sensitivity, 79.0% specificity and PPV of 82.0% and NPV of 
79.0%. Variables utilized included measures of delta absolute power, 
frontal theta coherence, and alpha temporal asymmetry and frontal/
posterior theta asymmetry. 

QEEG subtypes
In processing the ADHD and ASD data, we examined the narrow 

band spectral analyses from .39 to 19 Hz for each child across all 
19 electrode placements and identified the frequency at which the 
maximum deviation from normal occurred. We then used these 
narrow band spectral results to place the ASD and ADHD children 
separately into 4 sub-types or phenotypes to include those with 
maximal narrow band spectral deviations from normal that fell 
between; (1) 3.9-6.63 Hz, (2) 7.02-8.58 Hz, (3) 8.97-10.53 Hz, and (4) 
10.92-14.04 Hz. Results from these analyses are listed in Table 2. 

For ADHD, these subtypes included 17.5%, 25.5%, 24.1%, and 
13.9% of these children respectively. For ASD, these subtypes included 
15.3%, 17.5%, 23.4%, and 24.1% of these children respectively. While 
the distributions of these EEG frequency based subtypes were similar 
for both developmental disorders, more ADHD children showed 
abnormality between 7 and 9 Hz (high theta and low alpha) and more 
ASD children had abnormal findings between 11 to 14 Hz activities 
(beta). In addition, 19.0% of the ADHD and 19.7% of the ASD children 

Cluster Subtypes of significant (p<.10)  QEEG variable deviations*

Clinical Group Cluster 1 Cluster 2 Cluster 3 Cluster 4

ADHD

↓ Generalized Delta
↑ Generalized Theta
↑Central & Temporal 

Beta

↓ Generalized Delta
↑ Generalized Theta (esp Frontal)
↑ Generalized Alpha (esp Central)

↓Posterior relative pwr Beta

↓ Generalized Delta
↑ Frontal Theta

↑Generalized Alpha
↓Posterior Beta

↓ Frontal and Central Delta
↑ Frontal Theta

↑Frontal and Central Beta

Representative % 17.5% 25.5% 24.1% 13.9%

ASD

↓Generalized Delta
↑Generalized Theta

↓Posterior Alpha
↑Frontal Beta

↓Generalized Delta
↑Generalized Theta

↑Generalized Alpha (esp Frontal and Central)
↓Posterior Beta

↓Generalized Delta
↓Central and Posterior Theta

↑Generalized Alpha

↓General Delta
↑Frontal and Central Alpha

↑Generalized Beta

Representative  % 15.3% 17.5% 23.4% 24.1%

Table 2: Table showing a summary of the qEEG cluster types, their representation in the clinical groups, and the relative trends in Z-scores in these clusters for each 
clinical group.

*All measures were of absolute power unless otherwise specified 
Note that a common subtype characteristic across all clusters for both clinical populations is the presence of Delta deficits.
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had narrow band spectral analysis which failed to show a clear cut 
maximum peak deviation from normal and these children were 
not included within the present analyses. Group average VARETA 
images were then constructed for each of the 4 above defined subtypes 
separately for the ADHD and ASD children. Analysis of variance ‘F’ 
ratios were calculated comparing the VARETA images of the ADHD 
and ASD children at each of the 4 narrow band frequency groupings. 

QEEG subtype differences
In order to document the QEEG differences between each of the 

ADHD and ASD subtypes defined in this study on the basis of the 
narrow spectral band findings described above, we calculated group 
average head maps of z-score relative power across the traditional 
delta, theta, alpha, and beta frequency bands. This makes the present 
work more amenable for comparison with other published studies 
which utilize these frequency bands. Figure 1 presents these head 
maps separately for the ADHD and ASD children with each grouping 
representing a neurophysiological subtype of each disorder based 
upon frequency distribution differences. Table 2 summarizes these 
general subtypes for power measures exceeding p< .10 in tabular 
form. 

It was found that the EEGs of an independent sample of 14 
medicated ASD children were distributed across all subtypes. 
ANOVAs computed comparing relative power findings between the 
medicated and non-medicated children indicated that medication 
resulted in less of a delta relative power deficit (p< .01), especially in 
frontal and central regions, and an increase in frontal alpha (p< .01) 
and beta (p< .03) relative power.

VARETA subtypes
Figures 2,3,4, and 5 present the group average VARETA images 

in the axial plane for each narrow frequency band grouped separately 
for the ADHD and ASD children as well as the analysis of variance 
F-values for the significance of the difference between the ADHD and 
ASD groups. All VARETA images use threshold scaling such that 
colors shown represent statistically significant deviations from the 

normal population (upper two panels of each figure) or significant 
ANOVA differences between the ADHD and ASD children (bottom 
panel each figure). Note that the anatomical location of abnormal 
neurophysiological activity is very consistent across the ADHD and 
ASD subtypes with greater differences seen when comparing each 
ADHD and ASD subtype against each other. Consistent differences 
were seen between the ADHD and ASD subtypes at each frequency 
and these differences showed virtually the same pattern of anatomical 
abnormality across subtypes. In other words, despite the different 
frequency distributions noted between ADHD and ASD subtypes 
(as demonstrated in Figure 1; Table 2), the neuroanatomical 
structures identified by VARETA as showing abnormal activity are 
consistent within both the ADHD and ASD populations which differ 
significantly from one another.

Table 3 presents a comparison of the anatomical regions 
showing abnormal neurophysiological activity for the ADHD and 
ASD children. In general, ADHD is characterized by abnormal 
increased neurophysiological activity in the thalamus, caudate 
nucleus, cingulate, and in frontal, temporal, precentral, postcentral, 
parietal, and occipital cortical regions with decreased activity in the 
cerebellum. ASD children were characterized by increased activity in 
the cerebellum, thalamus, hippocampus, in parahippocampal, cuneus, 
cingulate, and lingual gyri, and in temporal, precentral, postcentral, 
parietal, and occipital cortical regions. In ADHD, abnormal activity 
was greater in inferior and superior frontal regions, in precentral 
and postcentral cortical regions, and in anterior cingulate cortex 

Figure 1: Figure showing univariate Z-score brain maps for a variety of broad 
bands of the qEEG.

Figure 2: Figure showing VARETA structures and corresponding Z-scores in 
current density for the broad band 4-6 Hz activity.
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and frontal/striatal regions than in ASD. In ASD, abnormal activity 
was greater than in ADHD in cerebellum, parahippocamus, lingual 
and parahippocampal gyri, and in occipital/temporal and posterior 
cingulate cortical regions.

Discussion
The majority of children with attention deficit disorder and 

those with ASD show QEEG abnormality indicative of functional 
impairment at sub-cortical and cortical regions. When very narrow 
band z-scored spectral components are examined within these two 
populations of children, 4 major subtypes or phenotypes of QEEG 
abnormality are identified and these were illustrated using the 
traditional broad band spectral components of z-relative power 
in Figure 1 and Table 2. When examining these findings, the 
commonalities of the QEEG features found in both the ADHD and 
ASD subgroups include generalized decreased delta activity and 
increased generalized theta activity. While some children from both 
the ADHD and ASD population fall into each of the four subtypes; 
theta excess, theta and alpha excess, alpha excess, and beta excess, the 
percentages of children within each subtype and the overall nature of 
each subtype varies across diagnostic category. A greater percentage 
of the ADHD children fell within the theta and alpha excess subtype 
(25.5% vs. 17.5%) while more ASD children showed a beta excess 
(24.1% vs. 13.8%). The ADHD children within all subtypes showed 
increased frontal theta not seen in the ASD children, and the degree 
of delta deficit present within each subtype was greater for the ASD 
population which also showed a greater degree of beta excess across 
subtypes than did the ADHD children. This beta excess is partially 
due to medication effects although the finding of a greater beta excess 
in ASD holds true when the medicated children were removed from 
all analyses. The beta excess present is noteworthy and was present 
with or without the presence of medication. The increased frontal 
abnormality in ADHD may reflect frontal/striatal dysfunction and 
the disruption of executive function often associated with problems 
of attention [33]. The deficit of delta common in ASD may reflect the 

cortical and subcortical connectivity issues often described in ASD 
[34]. The delta EEG rhythm has been hypothesized to play a role as 
an integrative mechanism across brain regions with two thalamo/
cortical networks active. The first network involves the thalamus and 
its’ connections to specific cortical regions and the second, involving 
delta, as a global integrative network [35]. In fact, Alper [36] suggests 
that delta power is modulated by dopamine and acts by facilitating 
the transition between local and global brain states.

Clarke [37] used cluster analysis of QEEG to document the 
existence of three ADHD subtypes in a sample of 184 ADHD boys 
and 40 age and gender-matched controls. Subtype 1 showed increased 
total power, increased relative theta and decreased relative delta and 
beta waves, and type 2 showed increased relative theta and decreased 
relative alpha and increased central/posterior relative delta. The third 
subtype showed increased relative beta and decreased relative alpha 
activity. These findings are similar to those reported in the present 
paper for our ADHD population. These findings are also in agreement 
with previous studies of eyes-closed resting QEEG in 407 children 
with ADHD or ADD. In these studies, QEEG frequency abnormality 
occurred in over 80% of these children with theta and alpha excess the 
most prevalent abnormal finding. Frontal and central regions were 
most likely to be involved, and if generalized, the magnitude of the 
frequency abnormality was greatest in these regions [38-40].

Studies of EEG frequency abnormality in children with ASD 
have provided less consistent results over those seen in ADHD. 
For example, two studies showed decreased delta frontally [2,41], 
while one found increased activity in the delta range [42]. Two 
studies reported increased generalized delta or described “slowing” 
[43,44]. Three studies showed theta increases [2,42,45], while one 

Figure 3: Figure showing VARETA structures and corresponding Z-scores in 
current density for the broad band 7-9 Hz activity. 

Figure 4: Figure showing VARETA structures and corresponding Z-scores in 
current density for the broad band 9-10 Hz activity.
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study reported reduced theta [41]. These inconsistencies do not 
appear to be accounted for by considering whether the study was 
done with the subjects in a resting state or under task conditions. 
By contrast, findings have been quite consistent with spectral power 
analyses of faster frequencies, alpha through gamma. All studies 
that completed spectral power analyses reported reduced alpha 
power [41,43] and increased beta [2,42,46,47] and gamma power 
[48]. These inconsistent results are possibly due to effects of early 
use of psychotropic medications on brain-behavior development 
[5] even when the subjects at the time of study were off medication 
and/or due to the limited sample sizes utilized and may also reflect 
the heterogeneity found in this population of children. In the 
present study with substantially larger samples of ASD children this 
heterogeneity is substantiated by the existence of at least 4 subtypes of 
QEEG frequency abnormality which encompass most of the findings 
described above.

The results of the VARETA analyses suggests that despite 
different patterns of EEG frequency abnormality across ADHD and 
ASD children, abnormalities occur in specific regions of interest 
between ADHD and ASD children which are noteworthy. More 
specifically, abnormalities are noted in the Thalamus, Caudate, 
Hippocampus, Post-Central Gyrus, Angular Gyrus, Cuneus, and 
Lingual Gyrus. The co-occurring abnormalities in these common 
structures likely accounts for many of the commonalities found in 

these two clinical populations. There appears to be a single underlying 
neurophysiological pathway or network that can be identified within 
each disorder. When processed using the VARETA software all four 
QEEG subtypes within a diagnostic category showed similar patterns 
of sub-cortical and cortical abnormality with consistent differences 
between the ADHD and ASD children present for each subtype. 
VARETA images of ADHD children revealed functional abnormality 
within the thalamus, hippocampus, and caudate nucleus that spread 
to and included the anterior cingulate, frontal/striatal, temporal, and 
parietal regions bilaterally. VARETA images of ASD children revealed 
functional abnormality within the thalamus, hippocampus, and 
caudate nucleus that spread to and included the posterior cingulate, 
supramarginal gyrus, lateral and medial occipital/temporal, superior 
parietal, and occipital cortical regions bilaterally. The sub-cortical 
and cortical regions showing abnormal neurophysiological function 
in ADHD and ASD children identified using QEEG based VARETA 
imaging agrees with the findings based upon other neuroimaging 
techniques such as MRI, fMRI, and PET.

Neuroimaging studies of ADHD indicate decreased regulation 
of the cerebellum and the frontal/striatal system [49] and decreased 
activation of frontal regions and connections between bilateral 
prefrontal regions and the temporal and parietal cortices, regions 
important for cognitive flexibility and executive function [33,50,51]. 
Disruptions in function of the frontal\striatal system and its 
connections with the caudate nucleus have also been reported [52]. 
Decreased activation of bilateral parietal regions, the precuneus 
region and the thalamus may indicate disturbances in salient feature 
detection and the ability to shift attention deficits often characteristic 
of ADHD [53]. Significant disturbances in the connections between 
the anterior cingulate cortex, the precuneus region and prefrontal 
cortex and with the posterior cingulate cortex have been reported 

Figure 5: Figure showing VARETA structures and corresponding Z-scores in 
current density for the broad band 11-14 Hz activity.

Sub Cortical & Cortical
Structures showing 

VARETA Abnormality

Attention Deficit 
Disorder

Autistic Spectrum 
Disorder

Significant 
Differences

Cerebellum X X ADHD less

Thalamus X X None

Caudate X X None

Hippocampus X X None

Inf. Mid. Sup. Temporal ALL Mid & Sup ASD less

Inf. Mid. Sup. Frontal ALL Mid ASD less

Precentral Gyrus X ASD less

Postcentral Gyrus X X None

Inf. Mid. Sup. Occipital X Superior ADHD less
Lat Mid Occipital/

Temporal X ADHD less

Sup. Parietal X X ADHD less

Angular Gyrus X X None

Supramarginal Gyrus X ADHD less

Cuneus X X None

Lingual Gyrus X N None

Cingulate Anterior & 
Posterior Posterior None

Table 3: Brain Structures Showing Abnormal Function using VARETA in Children 
with Attention Deficit Disorder and Autistic Spectrum Disorder.
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in ADHD [54]. In fact, anterior cingulate cortex function has been 
shown to play a role in the executive control of attention another 
area of attention processing in which those with ADHD often have 
problems [55].

In contrast, neuroimaging studies of ASD suggest abnormal 
function between frontal/striatal systems and more posterior cortical 
regions. This involves the disruption of the frontal/striatal and parietal 
networks important in the social brain system [56], and disruption 
of communication between the frontal/striatal, cerebellum, basal 
ganglia, thalamus, and ventral striatum important in mental 
state attribution and the superior temporal region important in 
perception and eye gaze [57], and decreased grey matter in frontal/
temporal and somatosensory regions involved in social cognition 
[58]. Further studies in ASD note disruption of the connections 
between the posterior cingulate region and the inferior and ventral 
temporal regions involved with the integration of visual and affective 
information [59], decreased activity in the superior temporal region 
and the cerebellum involved in the integration of sensory and limbic 
information and social perceptual skills [60], and decreased caudate 
nucleus volume and repetitive behavior [61].

The sub-cortical and cortical regions showing abnormal 
neurophysiological function in ADHD and ASD children identified 
using QEEG based VARETA imaging is supported by the findings 
described above which were based upon other neuroimaging 
techniques such as MRI, fMRI, and PET. Clearly, both QEEG and 
VARETA can play an important role in identifying the underlying 
physiological abnormality present in both ADHD and ASD. 
Individual patterns of findings may have implications for diagnostic 
purposes as well as for treatment selection and implementation. For 
example individual QEEG frequency profiles can be used to guide 
Neurofeedback to reduce the salient QEEG/VARETA abnormalities. 
Such training protocols have recently shown to have promise in 
ADHD and ASD [62,63]. With the identification of more specific 
network involvement in each of these populations, neurofeedback 
targeting structures using VARETA or LORETA (Low Resolution 
Electromagnetic Tomographic Analyses) may have promise 
for more potent means of achieving clinical improvement [64]. 
Neuropharmacotherapy can also use various pharmacological agents 
guided and assayed by their ability to normalize the QEEG which, 
from other pharmacokinetic studies, will predict favorable clinical 
responses [65].
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6.1            Introduction 

 Autistic spectrum disorders are a heterogeneous group of pervasive developmental 
disorders including autistic disorder, Rett disorder, childhood disintegrative disorder, 
pervasive developmental disorder-not otherwise specifi ed (PDD-NOS), and 
Asperger’s disorder. Children with ASD demonstrate impairment in social interac-
tion, verbal and nonverbal communication, and behaviors or interests (American 
Psychiatric Association  2000 ). ASD may be comorbid with sensory integration dif-
fi culties, mental retardation, or seizure disorders. Children with ASD may have severe 
sensitivity to sounds, textures, tastes, and smells. Cognitive defi cits are often associ-
ated with impaired communication skills (National Institute of Mental Health; NIMH, 
 2006 ). Repetitive stereotyped behaviors, perseveration, and obsessionality, common 
in ASD, are associated with executive defi cits. Executive dysfunction in inhibitory 
control and set shifting have been attributed to ASD (Schmitz et al.  2006 ). Seizure 
disorders may occur in one out of four children with ASD, frequently beginning in 
early childhood or adolescence (National Institute of Mental Health; NIMH,  2006 ). 

 Autistic disorder includes the following triad of symptoms: (1) impaired social 
interaction, failure to develop peer relationships, or lack of initiating spontaneous 
activities; (2) defi cits in communication including delay in or lack of spoken lan-
guage, inability to initiate or sustain conversation with others, stereotyped repetitive 
use of language, or idiosyncratic language; and (3) restricted repetitive and stereo-
typed behavior, interests, infl exible adherence to routines or rituals, and repetitive 
motor patterns (e.g., hand or fi nger fl apping or twisting) (American Psychiatric 
Association  2000 ). 
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 Individuals with Asperger’s disorder frequently have high levels of cognitive 
functioning, engage in literal pedantic speech, experience diffi culty comprehending 
implied meaning, exhibit problems with fl uid movement, and manifest inappropriate 
social interactions. Pervasive developmental disorder-not otherwise specifi ed (PDD-
NOS) refl ects defi cits in language and social skills, which do not meet the criteria of 
other disorders. In contrast, persons with childhood disintegrative disorder and Rett 
disorder both have normal periods of early development followed by loss of previ-
ously acquired skills. Common features among all these conditions include com-
munication and social skill defi cits. There is considerable variability in terms of 
onset and severity of symptomatology within the autistic spectrum of disorders 
(Siegel  1996 ; Attwood  1998 ; Hamilton  2000 ; Sicile-Kira  2004 ; McCandless  2005 ). 

 Research reviewing the epidemiology of autism (Centers for Disease Control 
and Prevention  2009 ) reported between 1 in 80 and 1 in 240 children in the United 
States diagnosed with the disorder. A report of just 3 years ago (Centers for Disease 
Control and Prevention  2009 ) suggested a prevalence of 1 in 110 and as high as 1 in 
70 boys. In their most recent report, the CDC ( 2012 ) suggests that the rate has risen 
to 1 in 88. ASDs are fi ve times more likely in boys for which it is seen in 1 out of 
54 male children. According to Blaxill ( 2004 ), the rates of ASD were reported to be 
<3 per 10,000 children in the 1970s and rose to >30 per 10,000 in the 1990s. This 
rise in the rate of ASD constituted a tenfold increase over a 20-year interval in the 
United States. With increased prevalence comes a need to design and empirically 
validate effective treatments for those impacted by autistic disorders. 

 Research studies utilizing electroencephalogram (EEG) and single photon emis-
sion computed tomography (SPECT) have provided evidence for a neuropathologi-
cal basis of ASD. A review of numerous EEG studies reported the rate of abnormal 
EEGs in autism ranged from 10 % to 83 %, while the mean incidence was 50 %. 
Atypical EEGs often predict poor outcomes for intelligence, speech, and educa-
tional achievement (Hughes and John  1999 ). In a more recent review of research, 
Rippon et al. ( 2007 ) proposed a model of reduced connectivity between specialized 
local neural networks and overconnectivity within isolated neural assemblies in 
autism. Disordered connectivity may be associated with an increased ratio of excita-
tion/inhibition in key neural systems. Anomalies in connectivity may be linked to 
abnormalities in information integration. In SPECT scans of children with autism, 
abnormal regional cerebral blood fl ow in the medial prefrontal cortex and anterior 
cingulate gyrus was related to impaired communication and social interaction, 
while altered perfusion in the right medial temporal lobe was associated with the 
obsessive desire for sameness (Ohnishi et al.  2000 ). Children with autism com-
monly display executive functioning defi cits in planning, cognitive fl exibility, and 
inhibition. These executive defi cits are associated with dysfunctional integration of 
the frontal lobes with other brain regions and thus also impact upon social, behav-
ioral, and cognitive function (Hill  2004 ). 

 Functional neuroimaging studies have also linked social cognition dysfunction 
and language defi cits in autism to neural substrates (Pelphrey et al.  2004 ; Welchew 
et al.  2005 ). During a sentence comprehension test, individuals with autism showed 
less functional connectivity between Broca’s and Wernicke’s areas relative to a 
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control group, suggesting a lower degree of information organization and neural 
synchronization during language tasks (Just et al.  2004 ). A review of neuroimaging 
studies has found key brain structures including the amygdala, superior temporal 
sulcus region, and fusiform gyrus to function differently in individuals with autism 
than in controls (McAlonan et al.  2005 ). 

 Parents of children with ASD select many different methods of treatment, with 
an average of seven different therapies being utilized (Green, Pituch, Itchon, Choi, 
O’Reilly, and Sigafoos,  2006 )   . Speech therapy (70 % of parents) was the most com-
monly selected treatment, followed by psychopharmacological treatment (52 % of 
parents). Other treatments included visual schedules (43 %), sensory integration 
(38 %), and applied behavior analysis (36 %). Special diets were implemented by 
27 % of parents and 43 % utilized vitamin supplements. While there may be some 
benefi t to these treatments, many do not lead to long-lasting changes and/or have 
risks associated with their implementation. The potential benefi ts and risks of the 
major treatments for ASD are summarized below.  

6.2     Treatments Often Used for ASDs 

 Other than neurofeedback, the most common treatments used for these children 
include applied behavior analysis (ABA), pharmacotherapy, special diets, vitamin 
supplements and enzymes, chelation, and hyperbaric oxygen therapy. Applied 
behavior analysis (ABA), a form of behavior modifi cation, is the method of treat-
ment with the most empirical support for treating ASD. The goal of this therapy is 
to improve social interaction, behavior, and communication (Bassett et al.  2000 ). 
ABA is fi rmly based on the principles of operant conditioning and measures small 
units of behavior to build more complex and adaptive behaviors through reinforce-
ment. Typically, imitation, attention, motivation, and compliance are targeted early 
(Couper  2004 ). Effi cacy has been demonstrated across multiple studies with varia-
tions on the technique (Schopler and Reichler  1971 ; Lovaas et al.  1973 ; Ozonoff 
and Cathcart  1998 ; Herbert et al.  2002 ; Ben-Itzchak and Zachor  2007    ) with follow-
 up studies showing ongoing improvements as a result (McEachin et al.  1993 ). 
Unfortunately, not all ABA studies have had such positive outcomes (Anderson, 
Avery, DiPietro, Edwards, and Christian,  1987    ). 

 In their clinical practice guidelines report, the New York State Department of 
Health Early Intervention Program recommended that ABA and other behavioral 
interventions be included in the treatment of autism. They specify that intensive 
behavioral programs should include a minimum of 20 h of intervention with a thera-
pist per week. Furthermore, the guidelines state that parents should be included in 
the intervention and that they be trained in the use of behavioral techniques to pro-
vide additional instruction at home with regular therapist consultation. Although 
promising, intensive behavioral programs are costly and require extensive time on 
the part of the therapist as well as the family, and debates are ongoing about who 
should pay for such services (Couper  2004 ). 

6 Neurofeedback for Autistic Disorders: Emerging Empirical Evidence
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 Although behavior therapy improves social, cognitive, and language skills, a 
year or more of intensive training has been used in most research studies that have 
demonstrated improvement. Furthermore, a strong commitment by parents to com-
plete therapeutic programs is necessary to achieve positive outcomes. While behav-
ioral treatment methods show the most empirical support to date, there remains a 
need for additional therapies, which may be more easily administered and used in 
conjunction with the behavioral methods described. It is important to note that 
though research has been promising, there has been great variability between stud-
ies in their results and outcome measures have often been questionable (e.g., IQ 
scores, returning to regular classrooms). And this approach appears to be more 
effective with those who are higher functioning (i.e., higher IQ), meaning that lower 
functioning individuals are often left out, even though they are perhaps in greatest 
need of treatment. 

 Pharmacological interventions have also been utilized to treat individuals with 
ASD. A study conducted at the Yale Child Study Center found that 55 % of a group 
of 109 individuals with a PDD were taking psychotropic medication, with 29.3 % 
taking more than one medication (Martin, Scahill, Klin, and Volkmar  1999    ). The 
most common medications were antidepressants (32.1 %), followed by stimulants 
(20.2 %) and neuroleptics (16.5 %). The objectives of psychopharmacological treat-
ment for autism include decreasing the core symptoms of autism, decreasing anxi-
ety and overfocus, improving social skills, reducing aggressive self-injurious 
behavior, increasing the effects of other interventions, and improving the quality of 
life for the child and their family. There is no single medication known to be benefi -
cial to all children with ASD nor that has specifi cally been developed for individuals 
with autistic spectrum disorder. 

 Psychostimulant medications are often used with children who are autistic due to 
its success in the treatment of ADHD (Jensen et al.  2007 ). Despite this, stimulant use 
in children who are autistic remains controversial and largely unproven in terms of 
effi cacy (Research Units on Pediatric Psychopharmacology Autism Network  2005 ). 
A newer class of neuroleptic, referred to as atypical antipsychotics, reportedly 
improves social interaction and decreases aggression, irritability, agitation, and 
hyperactivity (Barnard et al.  2002 ). They have fewer extrapyramidal adverse side 
effects than haloperidol and thioridazine. However, most children experience a sub-
stantial weight gain within the fi rst months of treatment (Committee on Children with 
Disabilities  2001 ). Risperidone and Abilify are the only drugs approved by the FDA 
to treat the symptoms (irritability) of autism. A recent meta-analysis of three random-
ized controlled trials found that the drug was effective in treating the symptoms of 
irritability and aggression (Jesner et al.  2007 ). The authors concluded that although 
risperidone may be benefi cial, its use must be weighed against its adverse effects, 
most notably weight gain, and that long-term follow up is needed prior to determin-
ing its effi cacy in clinical practice. The long-term effects of risperidone are estimated 
at 1 year (Zuddas et al.  2000 ) with a relapse rate of 12.5–25 % (Research Units on 
Pediatric Psychopharmacology Autism Network  2005 ; Troost et al.  2005 ). Santangelo 
and Tsatsanis ( 2005 ) reported that there are currently no drugs that produce major 
improvement in the core social or pragmatic language defi cits in autism, although 
several have limited effects on the behavioral features of the disorder. 
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 The use of SSRI agents for the treatment of repetitive, stereotypical, and 
 perseverative behaviors has also been explored (McDougle et al.  1995 ; Geller et al. 
 2001 ). Findings from such studies have been mixed at best (Cook et al.  1992 ; 
Hollander et al.  2005 ). While some studies report “success,” responders often 
include from 49 to 69 % of the samples (McDougle et al.  1996 ,  1998 ; DeLong et al. 
 2002 ; Owley et al.  2005 ). In other studies, the positive response rate is signifi cantly 
lower than this (McDougle et al.  2000 ; Couturier and Nicolson  2002 ; Martin et al. 
 2003 ). Based on the research cited, it appears that the limited benefi ts of psycho-
pharmacology come at the cost of side effects and rebound of aggressive behavior 
when medication is discontinued. Furthermore, these drugs appear to be only treat-
ing certain symptoms and typically not the core symptoms of ASD. Many children 
require multiple medications to improve their symptoms, and often the benefi ts do 
not outweigh the side effects. In addition to patients responding to highly variable 
doses, the majority of studies reviewed indicate that not all children with ASD 
respond to these various medications, and there is no good explanation for why 
some are considered responders and some are not. In summary, the research pub-
lished thus far suggests that some medications may be helpful in managing some of 
the behavioral disturbances seen in autism. 

 Research has suggested that individuals with autism may not properly metabo-
lize the proteins in casein (dairy) and gluten (wheat and related grains) resulting in 
an opioid effect on the brain as they enter the bloodstream (Reichelt,  2001 ). Use of 
a gluten–casein-free diet has been shown to lead to positive outcomes in some chil-
dren with autism (Knivsberg et al.  2002 ; Cade et al.,  1999    ; Reichelt and Knivsberg, 
 2003 ). However, more recently, Elder et al. ( 2006 ) conducted a rigorous double- 
blinded controlled trial of the GFCF diet in autism. Fifteen (12 boys, 3 girls) chil-
dren with ASD between the ages of 2 and 16 were studied over the course of 12 
weeks. The researchers reported no signifi cant differences between groups on their 
primary measure, the Childhood Autism Rating Scale, while parents reported 
improvement in their children. The researchers noted that the children were quite 
heterogeneous (which may have masked any group differences) and noted the rela-
tively small sample size. One of the major problems with the GFCF diet is that it 
may lead to reduced bone cortical thickness (Hediger et al.  2008 ). Indeed, in this 
study, boys between the ages of four and eight who were autistic showed an 18.9 % 
deviation in metacarpal bone cortical thickness, which was nearly twice that of boys 
on minimally restricted or nonrestricted diets. Furthermore, the GFCF diet may 
induce nutritional imbalances by limiting the foods that may be eaten. It has also 
been shown to increase the risk of becoming overweight/obese (Mariani et al.  1998 ). 

 Vitamin supplements and enzymes have been proposed as another treatment for 
autistic-related symptoms. One supplement that has generated a great deal of interest 
as a treatment for autism is the gastrointestinal hormone secretin. After receiving 
much heated attention in the media, a comprehensive review of research studies utiliz-
ing secretin to treat autism was conducted by Esch and Carr ( 2004 ). Seventeen quan-
titative studies were reviewed, encompassing approximately 600 children, ages 2–15, 
and 12 adults with ASD. Only one of the studies reviewed found a causal relationship 
between secretin administration and amelioration of autistic symptoms across various 
treatment variables (type of secretin, dosage potency, frequency), observation 
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times, and participant characteristics (e.g., GI status, severity of ASD, age, history of 
medication use). Twelve of the thirteen placebo-controlled studies reviewed obtained 
negative results. Despite the lack of empirical support for secretin, parents of autistic 
children continue to seek out secretin treatment from their physicians (Esch and Carr 
 2004 ). The reviewers attempted to explain this by the media attention that secretin 
received early on, coupled with the fact that parents of these children are often desper-
ate to fi nd a treatment for this debilitating condition. In addition to secretin, it has been 
suggested that the consumption of omega-3 fatty acids may have a positive effect on 
the symptoms of autism (Amminger et al.  2007 ). These highly unsaturated fatty acids 
are essential for normal brain development and functioning (Wainwright  2002 ), and 
some studies have found fatty acid defi ciencies in children who are autistic (Bell et al. 
 2000 ; Vancassel et al.  2001 ; Bell et al.  2004 ). Amminger and colleagues ( 2007 ) 
recently completed a double-blind, randomized controlled trial of omega-3 fatty acid 
supplementation in children who were autistic. They found that with administration 
of 1.5 g/day, the treatment group showed no signifi cant change in hyperactive behav-
iors including disobedience, distractibility, and impulsivity, relative to the control 
group. Potential limitations to this study include that it was conducted with only 12 
subjects, and preselection of these subjects was based on high irritability scores based 
on the Aberrant Behavior Checklist (Aman et al.  1985 ). 

 Anecdotal reports that methyl-B 
12

  (methylcobalamin) injections may improve the 
symptoms of autism have been plentiful; however, there have been very few con-
trolled research studies to support the effi cacy of this treatment. The only published 
study found by the authors was an open trial of methyl-B 

12
  conducted in Japan with 13 

children with autism, ranging from 2 to 18 years of age (Nakano et al.  2005 ). Dosages 
of 25–30 g/kg/day were administered for between 6 months and 25 months. The 
authors found a signifi cant increase in the intelligence and developmental quotients, 
as well as improvement on the Childhood Autism Rating Scale (Schopler, Reichler, 
DeVellis, and Daly,  1980    ). Even after the children were divided into subgroups based 
on age and intelligence, these effects did not diminish. This was not a controlled study, 
however. In contrast, a preliminary report of a double- blind crossover study presented 
at the American Academy of Child and Adolescent Psychiatry conference revealed no 
signifi cant benefi ts in the 14 patients in their study after 3 months (Deprey et al.  2006 ). 
Specifi cally, there were no differences between the methyl-B 

12
  injections and the pla-

cebo on the Clinical Global Impression Scale Improvement, Peabody Picture 
Vocabulary Test, or Social Communication Questionnaire verbal results. 

 A controversial theory to explain the increase in incidence of ASDs over the past 
30 years is that it is related to environmental factors such as exposure to heavy met-
als (Bradstreet et al.  2003 ), mercury (Hg) in particular. The medical literature indi-
cates that autism and Hg poisoning have numerous similarities in their symptom 
profi les, including psychiatric disturbances, speech, language, and hearing diffi cul-
ties, sensory impairment, and cognitive diffi culties (Bernard et al.  2000 ). In autism, 
heavy metal toxicity seems to occur from a decreased ability to excrete heavy met-
als (Adams et al.  2009 ). Because of this, some health-care providers are performing 
chelation therapy, which utilizes dimercaptosuccinic acid (DMSA) to clear the body 
of mercury and other toxic metals. 
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 Results of a study by Holmes ( 2001 ) suggest that chelation therapy may be 
effective only for young children with autism (under age six), with minimal benefi t 
for older children and adolescents (Kirby  2005    ). Recently, Adams et al. ( 2009 ) 
reported the results of a 2-phase study intended to determine the effi cacy of DMSA/
glutathione in treating children with autism. Overall, there were rated improve-
ments in 3 of every 4 children with 11 % showing a worsening of symptoms. 
Chelation therapy is considered by some to be a risky treatment, and there have even 
been reports of death following chelation therapy in autism (Sinha et al.  2006 ). 

 Direct treatment of brain anomalies in autism has also been pursued with the use 
of hyperbaric oxygen therapy (HBOT). Among other brain abnormalities that have 
been identifi ed, numerous studies using PET and SPECT have shown cerebral 
hypoperfusion in autism (George et al.  1992 ; Mountz et al.  1995 ; Ohnishi et al. 
 2000 ; Starkstein et al.  2000 ; Zilbovicius et al.  2000 ), leading to the hypothesis that 
HBOT may be benefi cial in the treatment of autism (Rossignol and Rossignol 
 2006 ). HBOT involves the inhalation of 100 % oxygen in a pressurized chamber, 
usually above one atmosphere absolute (ATA). It has been shown that HBOT can 
lead to improved functioning in various neurological populations that show cerebral 
hypoperfusion including stroke (Nighoghossian et al.  1995 ), cerebral palsy 
(Montgomery et al.  1999 ), chronically brain injured (Golden et al.  2002 ), and even 
a teenage male with fetal alcohol syndrome (Stoller  2005 ). It has been suggested 
that the increased oxygen delivered by HBOT could counteract the hypoxia caused 
by hypoperfusion and lead to a reduction in symptoms of autism. Preliminary sup-
port for this treatment was reported by Rossignol and Rossignol ( 2006 ). While a 
study by Rossignol et al. ( 2007 ) showed empirical support for the possible benefi ts 
of HBOT for autistic children, another study (where parents were blinded to the 
treatment) by Granpeesheh et al. ( 2010 ) showed no signifi cant benefi ts. 

 In summary, this review of the autism treatment literature reveals there are no 
treatments, except possibly behavior therapy, that have been well validated or that 
have exhibited favorable long-term results. In addition, many forms of intervention 
include the possibility of adverse effects, require long-term use, or were not devel-
oped specifi cally for autistic spectrum disorders. Neurofeedback represents an alter-
native that may have the potential to decrease symptomatology on a long-term basis 
with little risk of harm.  

6.3     Neurofeedback for ASD 

 Neurofeedback is designed to use sophisticated computer technology to train indi-
viduals to improve poorly regulated brain-wave patterns. In EEG biofeedback, 
information regarding brain-wave activity is fed to a computer that converts this 
information into game-like displays that can be auditory, visual, or both. During a 
typical session, EEG electrodes (which measure brain waves) are placed on the 
scalp and earlobe(s). Individuals instantly receive feedback about the amplitude 
and/or synchronization of their brain waves and learn to improve their brain-wave 
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functioning. The only way to succeed at the games involved is for children to con-
trol and improve their brain-wave patterns (following an operant-conditioning para-
digm). In research and clinical treatment for children with ADHD, this conditioning 
process has resulted in improvements that have persisted for up to 5–10 years or 
more (e.g., Lubar  1995 ). 

 Individuals who participate in EEG biofeedback learn to inhibit brain-wave fre-
quencies that may produce negative symptoms and enhance specifi c frequencies 
that produce positive results. Table  6.1  displays the typical EEG brain-wave fre-
quency bands and lists their normal occurrences and respective signifi cance [infor-
mation adapted from resources contained in Demos ( 2005 ) and    Thompson and 
Thompson ( 2003a ,  b )]. Within these general frequency bands, there may also be 
more detailed breakdowns of EEG activity. For example, mu-rhythm abnormalities 
are associated with excesses in the alpha-frequency band and have a characteristic 
morphologic and topographic distribution (Coben and Hudspeth  2006 ). Subdivisions 
of beta power have also been presented and related to clinical characteristics 
(Rangaswamy et al.  2002 ).

   Individuals with poorly regulated cortical activity can learn to develop a fl uid 
shift in brain waves to meet task demands utilizing neurofeedback. Through the 
process of operant conditioning, this treatment modality can result in improvement 
of brain-wave patterns as well as behavior. These changes in EEG patterns have 
been shown to be associated with regulation of cerebral blood fl ow, metabolism, and 
neurotransmitter function (Lubar  1997    ). 

 Neurofeedback is a noninvasive treatment with no known signifi cant or lasting 
negative side effects that has been shown to enhance neuroregulation and metabolic 
function in ASD (Coben and Padolsky  2007 ). Positive neurofeedback treatment 
outcomes are often achieved over the course of several months, in contrast to behav-
ior therapy, which often takes a year or more of intensive training. Furthermore, the 
therapeutic treatment outcomes of neurofeedback training with individuals with 

   Table 6.1    EEG frequency bands [adapted from Demos ( 2005 ) and Thompson and Thompson 
( 2003a ,  b )]   

 Name  Frequency  Normal occurrence  Signifi cance 

 Delta  0.5–3.5 Hz  Deep sleep and infants  Sign of signifi cant brain dysfunction, 
lethargy/drowsiness, or cognitive 
impairment 

 Theta  4–7.5 Hz  Young children, drowsiness, 
some aspects of learning 

 Slowing often related to attention/
cognitive impairments, internal focus 

 Alpha  8–13 Hz  Eyes closed, relaxation, 
self-awareness 

 Excessive alpha during demand states can 
be a sign of diffi culties with learning, 
emotional stability, relating to the 
environment, or others 

 Beta  13–30 Hz  Fast activity associated with 
alertness and activity 

 Excessive beta is often associated with 
anxiety, irritability, and poor 
integration 

 Gamma  >30 Hz  May be associated with 
problem solving and 
memory consolidation 

 Unknown 
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ADHD (increased attention, reduced impulsivity, and hyperactivity) have been 
reported to be maintained over time and not reverse after treatment is withdrawn as 
in drug therapy and diet therapy (Tansey  1993 ; Linden et al.  1996 ; Monastra et al. 
 2005 ; Lubar, Swartwood, Swartwood, and O’Donnell,  1995    ). 

 Over 30 years of research on using neurofeedback to treat ADHD has consis-
tently shown that it leads to improvements in attention, impulsivity, hyperactivity, 
and IQ (see Monastra et al.  2005 , for a review and analysis). This success was the 
foundation for the emergence of using neurofeedback with ASD. 

6.3.1     QEEG Evaluation and Autistic Spectrum Disorder 

 Quantitative electroencephalographic (QEEG) evaluation or “brain mapping” is an 
assessment procedure designed to pinpoint anomalies in brain function (Hammond 
 2005    ). QEEG analyses measure abnormalities, instabilities, or lack of proper com-
munications pathways (connectivity) necessary for optimal brain functioning. 
QEEG maps, collected using 19 electrodes based on the international 10–20 system 
(Jasper  1958    ), refl ect quantitative analyses of EEG characteristics of frequency, 
amplitude, and coherence during various conditions or tasks. These data can be 
statistically compared to an age-matched normative database to reveal a profi le of 
abnormalities. Such regions and aspects of dysfunctional neurophysiology may 
then be targeted specifi cally through individualized neurofeedback protocols. 

 QEEG analyses are conducted to assess underlying neurophysiological patterns 
related to the symptoms and challenges of children with ASD. In addition, assess-
ment of the raw EEG can be used to evaluate neurological abnormalities such as 
seizure disorders, which are common in children with autism. QEEG data are 
important for developing the most individualized, specifi c, and successful neuro-
feedback protocols for patients with ASD (Coben and Padolsky  2007 ; Linden  2004    ). 

 Coben et al. ( 2013 ) identifi ed fi ve relative power subtypes in individuals with 
autism. However, they noted that many types of dysfunction overlap in people with 
autism, and most reveal a combination of fi ndings. In over 83 % of the individuals 
with autism, connectivity anomalies could be identifi ed when compared to the nor-
mative group. Coben and Myers ( 2008 ) used QEEG multivariate connectivity data 
to develop a typology of autism connectivity patterns including (1) patterns of 
hyperconnectivity across bilateral frontotemporal regions and between left hemi-
sphere locations and (2) hypoconnectivity involving orbitofrontal, frontal to poste-
rior, right posterior, or left hemisphere sites. A pattern of hypoconnectivity that 
underlies a mu-rhythm complex was identifi ed as well.  

6.3.2     Neurofeedback: Case Studies, Case Series, 
and Group Pilot Studies 

 There have been numerous case and group pilot studies conducted with clients 
 diagnosed with autistic spectrum disorders. In general, these studies have shown 
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that neurofeedback improved symptomatology and these improvements were 
 maintained at follow-up. For a more thorough review of these, please see Coben 
et al. ( 2010b ).  

6.3.3     Controlled-Group Studies of Neurofeedback for ASD 

 There have been two approaches to the research done related to neurofeedback and 
ASD. Kouijzer and her colleagues have researched the effects of power training and 
Coben and his colleagues the effects of coherence training. The fi rst study of 
Kouijzer and colleagues ( 2009b ) investigated the effects of neurofeedback in chil-
dren with autism. It included 14 children from 8 to 12 years old with a pervasive 
developmental disorder—not otherwise specifi ed (PDD-NOS)—diagnosis. 
Excluded were children with an IQ score below 70, children using medication, and 
children with a history of severe brain injury or comorbidity such as ADHD or epi-
lepsy. Participants were divided into treatment and wait-list control group according 
to the order of applying. During baseline (Time1), all participants were evaluated 
using QEEG and a range of executive function tasks, and parents completed behav-
ior questionnaires (CCC and Auti-R). After neurofeedback training (Time2), or a 
comparable time interval for the wait-list control group, QEEGs and data on execu-
tive functions and social behavior were re-collected. One year after ending treat-
ment (Time3), follow-up data including QEEGs, executive function tasks, and 
behavior questionnaires were collected in the treatment group. Participants in the 
treatment group had neurofeedback training twice a week, until 40 sessions were 
completed. In each session, participants were rewarded when inhibiting theta power 
(4–8 Hz) and increasing low beta power (12–15 Hz) at scalp location C4 according 
to a protocol including seven 3 min intervals of neurofeedback training separated by 
1 min rest intervals. After 40 sessions of neurofeedback, 70 % of the participants in 
the treatment group had effectively decreased theta power and increased low beta 
power. Repeated measures MANOVA on the executive functions data collected at 
Time1 and Time2 revealed a signifi cant interaction between treatment and control 
group, indicating improvement of participants in the treatment group on tasks mea-
suring attention skills, cognitive fl exibility, set shifting, concept generation/inhibi-
tion, and planning. Using repeated measures MANOVA to compare questionnaire 
data collected at Time1 and Time2 revealed a signifi cant interaction effect between 
treatment and control group, indicating improvement in nonverbal communication 
and general communication. Time2 Auti-R questionnaire data evaluating changes 
in behavior over the last 6 months showed signifi cant improvement in social interac-
tions, communication skills, and stereotyped and repetitive behavior for the treat-
ment group, but not for the control group. 

 In a second study by Kouijzer and colleagues ( 2010 ), several methodological 
improvements were implemented to better identify the effects of neurofeedback. 
A randomized wait-list control group design was used, and the study was conducted 
at the schools of the participants ( n  = 20). Participants were 8–12 years old and 
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had diagnoses of autism, Asperger’s disorder, or PDD-NOS. Participants in the 
treatment group had 40 individual neurofeedback sessions using an individualized 
treatment protocol based on an initial QEEG. However, all treatment protocols 
included theta inhibition at fronto-central scalp locations. Treatment response was 
evaluated by QEEG measures taken during rest and task conditions, a range of exec-
utive function tasks, and social behavior questionnaires fi lled out by parents and 
teachers. All data were collected before (Time1) and after treatment (Time2) and at 
6 months follow-up (Time3). 

 Results of the study showed that 60 % of participants decreased theta power 
within 40 sessions of neurofeedback. Additionally, repeated measures MANOVA 
on QEEG data revealed a signifi cant interaction between treatment and control 
group, indicating a decrease in theta power in the treatment group in two out of four 
QEEG conditions. Repeated measures MANOVA on Time1 and Time2 executive 
function data showed a signifi cant interaction between treatment and control group 
for cognitive fl exibility, indicating improvement in cognitive fl exibility in the treat-
ment group compared to the control group. Repeated measures MANOVA showed 
a signifi cant interaction effect for social interactions and communication skills, 
indicating that parents of participants in the treatment group reported signifi cant 
improvement in social interactions and communication skills, whereas less or no 
improvement was reported by parents of children in the control group. 

 Coben and his colleagues began researching the effects of coherence/connectiv-
ity training on autistic symptoms about 6 years ago. Coben and Padolsky ( 2007 ) 
published a study investigating the effects of neurofeedback treatment for autistic 
disorders. The study included 49 children on the autistic spectrum, with 37 partici-
pants receiving QEEG connectivity-guided neurofeedback and 12 participants in a 
wait-list control group. Treatment included 20 sessions performed twice per week. 
The control group was matched for age, gender, race, handedness, other treatments, 
and severity of ASD. According to the parents, there was an 89 % success rate for 
neurofeedback and an average of 40 % reduction in core ASD symptomatology. 
There were signifi cant improvements on neuropsychological measures of attention, 
visual–perceptual skills, language functions, and executive functioning. Importantly, 
reduced cerebral hyperconnectivity was associated with positive clinical outcomes, 
and in all cases of reported improvement, positive outcomes were supported by 
neurophysiological and neuropsychological assessment. 

 Mu-rhythm abnormalities are a sign of mirror neuron dysfunction, which is 
thought to be the case in many children with autism (Oberman et al.  2005 ). In two 
studies focused on reducing abnormal mu rhythms in children with autism, Pineda 
and Hecht ( 2009 ) found that according to parents, participants showed a small but 
signifi cant reduction in symptoms but increased ratings of sensory-cognitive aware-
ness. In another study related to mu rhythms, Coben and Hudspeth ( 2006 ) studied 
fourteen children with ASD who were identifi ed as having signifi cantly high levels 
of mu activity and a failure to suppress mu during observational activity. They all 
received assessment-guided neurofeedback, with a strong focus on aspects of mu 
power and connectivity. The participants were nonrandomly assigned to an inter-
hemispheric bipolar training ( n  = 7) or a coherence training ( n  = 7) group designed to 
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increase connectivity between central regions and the peripheral frontal cortex. All 
patients were given neurobehavioral and neuropsychological testing and QEEG 
assessment. Both groups of patients improved signifi cantly on neurobehavioral and 
neuropsychological measures. However, only in the coherence training treatment 
group was mu activity signifi cantly reduced. Increased coherence was associated 
with diminished mu and improved levels of social functioning. Lastly, Coben ( 2007 ) 
conducted a controlled neurofeedback study focused on intervention for prominent 
social skill defi cits based on a facial/emotional processing model. Fifty individuals 
with autism were included in these analyses, and all had previously had some neu-
rofeedback training. All patients underwent pre- and post-treatment neuropsycho-
logical, QEEG, and parent rating scale assessments. Twenty-fi ve individuals were 
assigned to either an active neurofeedback or a wait-list control group, in a random-
ized fashion. The two groups were matched for age, gender, race, handedness, med-
ication usage, autistic symptom severity, social skill ratings, and visual–perceptual 
impairment levels. Neurofeedback training was QEEG connectivity guided and 
included coherence training (along with amplitude inhibits) between maximal 
sights of hypocoherence over the right posterior hemisphere. The group that received 
the coherence training showed signifi cant changes in symptoms of autism, social 
skills, and visual–perceptual abilities such that all improved. Regression analyses 
showed that changes in visual–perceptual abilities signifi cantly predicted improve-
ments in social skills. EEG analyses were also signifi cant, showing improvements 
in connectivity and source localization of theta power related to brain regions (fusi-
form gyrus, superior temporal sulcus) associated with enhanced visual/facial/emo-
tional processing. 

 In the seven controlled-group studies that have been completed, a total of 214 
individuals with autism have been studied and positive results reported in each 
study. These fi ndings have included positive changes as evidenced by parental 
report, neuropsychological fi ndings, and changes in the EEG (Coben  2007 ). Both 
Coben and Padolsky ( 2007 ) and Yucha and Montgomery ( 2008 ) have viewed these 
data as demonstrating a level of effi cacy of “possibly effi cacious” based on the stan-
dards put forth by the Association for Applied Psychophysiology and Biofeedback 
(AAPB  2006 )   . Added to these initial fi ndings of effi cacy is preliminary evidence 
that the effects of neurofeedback on the symptoms of autism are long-lasting (1–2 
years) (Coben  2009 ; Kouijzer et al.  2009a ). While these fi ndings are initially 
encouraging, there are many limitations that prevent fi rm conclusions to be drawn 
from the data collected thus far. 

 First, these studies have largely included nonrandomized samples. It is possible 
that an unknown selection bias exists which could have impacted the fi ndings. 
Second, none of these studies have included participants or therapists/experimenters 
who were blind to the condition. Knowledge of group placement could have 
impacted the fi ndings such that those in treatment (and their parents) would be 
prone to report signifi cant changes. Third, there has been no attempt to control for 
placebo effects, attention from a caring professional, or expectations of treatment 
benefi t. A randomized, double-blinded, placebo-controlled study is clearly needed 
to further demonstrate effi cacy. 
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 In terms of generalization of these fi ndings to the larger population of individuals 
who are autistic, very young children and adults have not been well represented in 
these group studies. Lastly, there is the question of whether neurofeedback may be 
applicable to persons who are lower functioning or who have more severe symp-
toms associated with autism. These populations also should be the focus of future 
investigations.  

6.3.4     Effi cacy of Connectivity-Guided Neurofeedback 
for Autistic Spectrum Disorder 

 Recently, Coben ( 2009 ) presented on a study of the effects of an entire course of 
connectivity-guided neurofeedback treatment on autistic children. This included 110 
subjects on the autistic spectrum, with 85 in the experimental and 25 in the control 
(wait-list) group. The mean age of these subjects was 9.7 years (range 4–20 years). 
Seventy-seven percent of these subjects were not on medication at the time, while 
14 % were on one medication, 7 % on two medications, and 1 % on three medications. 
The mean IQ of this group was 93 (range 50–130). The mean ATEC score was 50 
(range 40–170). There were no signifi cant differences between the experimental and 
control groups for age, gender, handedness, race, medications, IQ, or ATEC scores. 

 The experimental group underwent an average of 74 neurofeedback sessions. They 
were assessed using QEEG, neuropsychological testing, and parent rating scales 
before treatment and then again after treatment. In order to evaluate the effi cacy of 
neurofeedback treatment for reducing ASD symptomatology, the subjects’ scores on 
the ATEC and neuropsychological testing were compared before and after treatment. 
A univariate analysis of variance (ANOVA) revealed that ATEC scores changed sig-
nifi cantly after treatment ( F  = 117.213;  p  < 0.0001; see Fig.  6.1 ). Furthermore, 98.8 % 
of parents reported a reduction in ASD symptoms on the ATEC after treatment.

  Fig. 6.1    Pre- and post- 
treatment ATEC scores       

 

6 Neurofeedback for Autistic Disorders: Emerging Empirical Evidence



120

   On objective neuropsychological testing, 100 % of subjects demonstrated some 
degree of improvement. An ANOVA revealed improvements on tests of visual– 
perceptual skills ( F  = 53.6;  p  < 0.0001), language abilities ( F  = 31.24;  p  < 0.0001), 
attentional skills ( F  = 54.04;  p  < 0.0001), and executive functioning ( F  = 15.65; 
 p  = 0.00015). In fact, visuoperceptual skills improved 43 %, language abilities improved 
47 %, attentional skills improved 56 %, and executive functioning improved 48 %. 

 Once it was determined that the therapy was effi cacious, the next question inves-
tigated was whether it had greater effi cacy depending on level of functioning or 
severity of autistic symptoms. We investigated the effects of pretreatment ATEC 
and IQ scores on treatment outcome by dividing the groups into quartiles based on 
ATEC and IQ scores and reanalyzing the data. There were no signifi cant differences 
for any of these analyses. This revealed that (1) ASD symptomatology improved 
with treatment regardless of IQ and (2) severity of ASD symptoms did not affect 
treatment outcomes. These results suggest that neurofeedback is an effective treat-
ment regardless of the child’s intellectual ability or severity of symptoms, at least 
within the parameters of the subjects that were included in this study.  

6.3.5     Enduring Effects of Neurofeedback on Children with ASD 

 Both Kouijzer and Coben, along with their respective colleagues, have studied the 
enduring effects of neurofeedback after the treatment period has ended. One year 
follow-up data from Kouijzer et al.’s original study demonstrated enduring effects of 
neurofeedback treatment (Kouijzer et al.  2009a ). Repeated measures MANOVA on 
the executive function task scores at Time2 and Time3 indicated maintenance of 
cognitive fl exibility, planning skills, and verbal inhibition, improvement of attention, 
and marginally signifi cant improvement of motor inhibition. No signifi cant decreases 
in executive function skills were found after 1 year. Repeated measures MANOVA 
comparing Time1 and Time3 data confi rmed maintenance of these effects. Analysis 
revealed signifi cant increases of all executive functions that improved after neuro-
feedback treatment, i.e., attention skills, cognitive fl exibility, inhibition, and plan-
ning. Figure  6.2  shows Time1, Time2, and Time3 scores of the treatment group on 
tests for attention, cognitive fl exibility, inhibition, and planning.

   Analysis of behavior questionnaires fi lled out by parents at Time2 and Time3 
showed no loss of nonverbal communication and general communication (CCC), 
social interactions, communication skills, and stereotyped and repetitive behavior 
(Auti-R). Comparing Time1 and Time3 behavior questionnaires (CCC) confi rmed 
the positive effect for nonverbal communication, but not for general communica-
tion. Figure  6.3  shows Time1, Time2, and Time3 questionnaire data (CCC) for gen-
eral communication and nonverbal communication of the treatment group.

   Detailed information about the results of this study can be found in the original 
paper (Kouijzer, de Moor, Gerrits, Buitelaar et al.  2009    ). 

 Analysis of the 6-month follow-up data from their second study (Kouijzer, van 
Schie, de Moor, Gerrits, and Buitelaar  2009    ) revealed enduring effects of 
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neurofeedback treatment. Repeated measures MANOVA was used to compare the 
scores on executive function tasks at Time2 and Time3 and showed no signifi cant 
changes, suggesting that participants maintained the same levels of executive func-
tioning for at least 6 months. Repeated measures MANOVA comparing Time1 and 
Time3 data confi rmed the previously described effects by revealing a signifi cant 
increase of cognitive fl exibility for the treatment group but not for the control group. 
Figure  6.4  shows Time1, Time2, and Time3 scores of the treatment and control 
group on cognitive fl exibility.

   Repeated measures MANOVA comparing the scores on behavioral question-
naires at Time2 and Time3 showed no effects of group or time, indicating mainte-
nance of the effects in social behavior that were reached 6 months earlier. Repeated 
measures MANOVA comparing Time1 and Time3 questionnaire data confi rmed 
this effect by showing a signifi cant interaction, suggesting decreases in problem 
scores on behavior questionnaires for the treatment group, but not for the control 
group. Figure  6.5  shows Time1, Time2, and Time3 questionnaire data of social 
interactions and communication skills of treatment and control group.

   More detailed information about the results of this study can be found in the 
original paper (Kouijzer et al.  2009a ). 

 Both studies discussed above indicate maintenance of the effects in executive 
functions and social behavior from 6 months to 1 year after ending neurofeedback 
treatment. 

 A similar study with fi ndings which can be considered complementary to those 
of Kouijzer and colleagues was recently conducted by Coben at his New York clinic 
(Coben et al.  2010a ). This study assessed 20 patients with ASD in order to investi-
gate long-term clinical effects of neurofeedback in terms of behavioral and 

  Fig. 6.2    Time1, Time2, and Time3 data of the treatment group on executive function tasks       
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neuropsychological measures. The subject pool for this study was predominately 
male (16 out of 20 individuals) and all Caucasian. The mean age was 9.53 years, 
with a range of 5–10 years. Most subjects (80 %) were medication free, with only 
one subject taking more than two medications. Handedness was mostly right handed 
( n  = 16) with one left handed and 3 ambidextrous subjects. Subjects were adminis-
tered parent rating scales, including the Autism Treatment Evaluation Checklist 
(ATEC; Rimland and Edelson  2000 ), the Personality Inventory for Children (PIC-2; 
Lachar and Gruber  2001    ), the Behavior Rating Inventory of Executive Function 
(BRIEF; Gioia, Isquith, Guy, and Kenworthey,  2000    ), and the Gilliam Asperger’s 
Disorder Scale (GADS; Gilliam 2001). Subjects were also administered 

  Fig. 6.3    Time1, Time2, and Time3 data of the treatment group on social behavior: general com-
munication ( a ) and nonverbal communication ( b )       
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neuropsychological assessments covering domains of attention/executive function-
ing, language, and visuospatial processing. After baseline assessments were col-
lected, all subjects underwent at least 40 sessions of neurofeedback training, with an 
average of 64.5 completed sessions among all subjects. Upon completion of ther-
apy, subjects were reevaluated and pre- and post-treatment scores were compared 
for signifi cance. After reevaluation, neurofeedback was withheld for between 
5 months and 22 months (mean 10.1 months), while no other treatments were 
administered. Following this break in treatment, subjects were evaluated once again 
in the same fashion as previously described. Their latter scores were then compared 
to scores obtained at the end of active neurofeedback training (Time2). 

 All statistical computations were performed in the statistical package SPSS. 
Scores prior to treatment on parent rating scales were compared for signifi cance to 
scores obtained after treatment had ended. Analysis of pre- and postscores obtained 
from the ATEC revealed signifi cant changes following neurofeedback training. 
Likewise, changes in scores on the GADS prior to and following treatment were 
found to be signifi cant. Signifi cant changes were also found to be present following 
treatment among scores from the BRIEF as well as the PIC-2. Interestingly, when 
subjects were reassessed following the 5-month to 22-month period of no neuro-
feedback training, no signifi cant changes were found on any parent rating scale 
administered (Fig.  6.6 ). This suggests that changes in parent ratings that were 
improved by neurofeedback training remained stable during this follow-up period.

   Neuropsychological evaluations encompassing the domains of attention, execu-
tive functioning, language, and visuospatial processing were also analyzed for sig-
nifi cant differences. Signifi cant changes from pre- to post-treatment scores were 
found among all three domains assessed: attention/executive functioning, language, 
and visuospatial processing. Interestingly, signifi cant therapeutic changes were also 

  Fig. 6.4    Time1, Time2, and Time3 data of treatment and control group on cognitive fl exibility       
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found after subjects were reevaluated after a lengthy (5–22 months) absence from 
neurofeedback training. These occurred in the areas of attention, language, and 
visuospatial processing (Fig.  6.7 ). This would suggest that neurofeedback training 
not only led to objective gains in neuropsychological functioning but that these 
enhancements in functioning continued to improve over the follow-up period when 
no treatment was being received.

   The results of this present study were quite interesting. First, our fi ndings add to 
the wealth of studies that have shown that from pre- to posttreatment conditions, 

  Fig. 6.5    Time1, Time2, and Time3 data of treatment and control group on social behavior: social 
interactions ( a ) and communication skills ( b )       
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neurofeedback is an effective therapy for treating individuals with autistic spectrum 
disorders. Additionally, these results show that this treatment was effective in limit-
ing autistic behavioral defi cits as well as defi cits of a more neuropsychological 
nature. Furthermore, as our analysis shows, there were no signifi cant increases in 
autistic pathology when subjects were reevaluated after neurofeedback was 

  Fig. 6.6    Graph showing the clinical improvements among subjects as assessed by the parents rating 
scales of ATEC, BRIEF, GADS, and PIC-2 for pretreatment, post-treatment, and follow-up periods       

  Fig. 6.7    Graph showing the clinical improvements among the domains of attention/executive 
functioning, language, and visuospatial processing as assessed by neuropsychological evaluations 
at pretreatment, post-treatment, and follow-up periods       
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withheld. This fi nding supports previously found evidence that neurofeedback is 
capable of creating stable changes within autistic subjects that are not likely to rap-
idly degrade when treatment ends (Jarusiewicz  2002    , p. 749; Coben  2007 , p. 740). 

 Of potentially even greater interest, this study found that during the period in 
which subjects were receiving no treatment, positive clinical neuropsychological 
gains were still being manifested within the domains of attention, executive func-
tioning, language, and visuospatial processing. Thus, even without continued treat-
ment, subjects apparently were continuing to improve in these realms. An important 
implication of this fi nding is that neurofeedback may indeed change the autistic 
brain to work in novel and more effi cient ways, and these changes may continue to 
progress even after the treatment has ended. This fi nding helps further the claim that 
neurofeedback creates specifi c neurophysiological changes within the autistic brain 
(Coben et al.  2009 ). This is in stark contrast to other commonly administered treat-
ments for autism. For example, Lovaas et al. ( 1973 , p. 1145) performed a study in 
which applied behavioral analysis (ABA) was administered to a group of children 
with autism. Upon completion of ABA training, the experimenters reported positive 
gains in terms of clinical improvements in behavioral defi cits. Subjects were then 
reevaluated between 1 and 4 years later, and subjects who did not continuously 
receive ABA training had signifi cantly regressed. As our current fi ndings demon-
strate, there is no evidence of regression among any of our subjects receiving neu-
rofeedback training. In terms of drug therapies, there is no evidence to our knowledge 
that would indicate that medications result in enduring clinical gains for subjects 
with autism when medication is withheld. In fact, numerous studies indicate that 
prolonged medication use has detrimental effects on autistic individuals (Malone 
 2002 , p. 1149; Anderson et al.  2010    ). 

 In terms of the limitations of the current study, the participants consisted of a 
selected pool of subjects. Subjects were placed in groups by choice of the experi-
menter rather than by random assignment. When subjects are chosen in that manner, 
there may be a degree of selection bias associated. We would also recommend that 
this experiment be replicated with more neuropsychological assessments and parent 
rating scales included in order to more widely assess the effects of neurofeedback 
training. This type of investigation could broaden the present fi ndings and help 
determine if there are other correlations or signifi cant predictors we might not have 
considered. Also, we would recommend a study with a greater gap between the end 
of treatment and reevaluation of subjects. Doing this, we believe, would help to 
assess nature and extent of any positive clinical gains found in subjects when they 
are no longer receiving treatment, as well as test more fully the limits of enduring 
effects of neurofeedback treatment.   

6.4     Discussion 

 There are few interventions with proven effi cacy for children with autism. Behavioral 
modifi cation interventions currently have the most empirical support, while phar-
macologic interventions, hyperbaric oxygen, and vitamin supplementation have 
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shown some potential. It is our opinion that neurofeedback is in a similar position 
with respect to effi cacy for ASD, but more research is needed. Neurofeedback is an 
intervention that may prove to be effi cacious in the treatment of symptoms of 
autism. At present, it should be viewed as possibly effi cacious with potential as is 
the case with most interventions used with this population. Measuring brain-related 
changes that may occur as a result of neurofeedback is one way of demonstrating its 
effi cacy and mechanism of action. Additional well-designed, more rigorous studies 
and longer follow-up periods should be included in the future to measure the effi -
cacy of neurofeedback in treating children on the autistic spectrum. 

 In addition, there is growing evidence that neurofeedback is a therapy capable of 
creating enduring changes in children with autism. A therapy that can lead to long- 
lasting effects for children with developmental disorders (and perhaps continuing 
improvement even after the treatment is stopped) is an enormous asset for children 
with developmental disorders. Most contemporary treatments require prolonged 
and lengthy treatment sessions. For example, ABA training can require up to 40 h a 
week over several months to be effective (Howard  2005 , p. 1132   ). Furthermore, 
drug therapies usually require years of medication in order to maintain effi cacy. In 
addition, some children require incremental increases in dosages over a period of 
years for medication use to be clinically viable. Our current results and those of oth-
ers discussed in this chapter indicate that neurofeedback therapy can reach clinical 
effi cacy relatively quickly and positive gains can be retained for months after treat-
ment has stopped. Outside of the clinical implications, there are ancillary benefi ts 
supporting the use neurofeedback. For example, the fi nancial aspects of this treat-
ment should be considered. Presently, the United States alone spends upward of 
$3.2 million for the care and treatment for a single individual with autism, a fi gure 
that equates to $35 billion annually (Ganz  2006 ). 

 Results of the studies reviewed in this chapter also provide evidence for the 
safety of neurofeedback. All studies reported no instances of subjects worsening or 
showing any side effects while undergoing this treatment over an extended period of 
time. Moreover, there was no evidence of negative side effects when neurofeedback 
was ceased. In fact, the opposite was found across all studies. This, again, is contra-
dictory to other interventions, most notably drug therapies, which have documented 
adverse reactions within this population and often have failed to demonstrate posi-
tive effects on primary symptoms (Kidd  2002 ). Investigations into other contempo-
rary treatments (i.e., diet and chelation therapies) have failed to yield adequate 
evidence in regard to their safety or effi cacy (McDougle et al.  2000 ; Doja and 
Roberts  2005    ; Elder et al.  2006 ). 

 We speculate that the enduring effects of neurofeedback in children with devel-
opmental disorders are the result of this treatments’ ability to change the brain in a 
therapeutic manner. Recently, Coben and colleagues reported specifi c neurophysi-
ological changes in terms of coherence within and between specifi c neural regions 
following neurofeedback treatment for children with autism spectrum disorder 
(Coben et al.  2009 ). We would argue that neurofeedback training causes specifi c 
neurophysiological changes within the brain, which in turn contribute to the long- 
lasting effects of this treatment, and this fosters the continued growth and develop-
ment of cognitive functions. Moreover, we suggest that more research be conducted 
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into the precise neural areas clinically affected by neurofeedback in an effort to 
more fully understand the effi cacy of neurofeedback for children with developmen-
tal disorders. In summary, results of the studies examined add to the growing wealth 
of investigations into the effi cacy of neurofeedback as a treatment for children with 
developmental disorders. Moreover, these results have found this treatment to be 
effective over an extended period of time. Consistent with these results, we recom-
mend future studies be conducted that assess the enduring effects of neurofeedback 
over even longer treatment spans.     
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Neuroimaging technologies and research has shown that autism is largely a disorder of
neuronal connectivity. While advanced work is being done with fMRI, MRI-DTI, SPECT and
other forms of structural and functional connectivity analyses, the use of EEG for these
purposes is of additional great utility. Cantor et al. (1986) were the first to examine the
utility of pairwise coherence measures for depicting connectivity impairments in autism.
Since that time research has shown a combination of mixed over and under-connectivity
that is at the heart of the primary symptoms of this multifaceted disorder. Nevertheless,
there is reason to believe that these simplistic pairwise measurements under represent
the true and quite complicated picture of connectivity anomalies in these persons. We
have presented three different forms of multivariate connectivity analysis with increasing
levels of sophistication (including one based on principle components analysis, sLORETA
source coherence, and Granger causality) to present a hypothesis that more advanced
statistical approaches to EEG coherence analysis may provide more detailed and accurate
information than pairwise measurements. A single case study is examined with findings
from MR-DTI, pairwise and coherence and these three forms of multivariate coherence
analysis. In this case pairwise coherences did not resemble structural connectivity,
whereas multivariate measures did. The possible advantages and disadvantages of
different techniques are discussed. Future work in this area will be important to determine
the validity and utility of these techniques.

Keywords: autism spectrum disorders, EEG/MEG, connectivity analysis, coherence analysis, sLORETA, granger

causation analysis

INTRODUCTION
Autistic Spectrum Disorders (ASD) are a heterogeneous group
of pervasive developmental disorders including Autistic Disorder,
Childhood Disintegrative Disorder, Pervasive Developmental
Disorder-Not Otherwise Specified (PDD-NOS), and Asperger
Disorder. Children with ASD demonstrate impairment in social
interaction, verbal and nonverbal communication, and behaviors
or interests (DSM-IV-TR; APA, 2000). ASD may be comorbid
with sensory integration difficulties, mental retardation or seizure
disorders. Children with ASD may have severe sensitivity to
sounds, textures, tastes, and smells. Cognitive deficits are often
associated with impaired communication skills. Repetitive stereo-
typed behaviors, perseveration, and obsessionality, common in
ASD, are associated with executive deficits. Executive dysfunction
in inhibitory control and set shifting have been attributed to ASD
(Schmitz et al., 2006). Seizure disorders may occur in one out of
four children with ASD; frequently beginning in early childhood
or adolescence (NIMH, 2006).

Research reviewing the epidemiology of autism (Center for
Disease Control and Prevention; CDC, 2009) reported between
1 in 80 and 1 in 240 children in the United States diagnosed with

the disorder. A report of just 3 years ago (CDC, 2009) suggested a
prevalence of 1 in 110, and as high as 1 in 70 boys. In their most
recent report, the CDC (2012) suggests that the rate has risen to 1
in 88. ASDs are five times more likely in boys for which it is seen
in 1 out of 54 male children. According to Blaxill (2004), the rates
of ASD were reported to be <3 per 10,000 children in the 1970s
and rose to >30 per 10,000 in the 1990s. This rise in the rate of
ASD constituted a 10-fold increase over a 20 year interval in the
United States. These findings make accurate assessment of autistic
individuals and their underlying neurophysiology a priority.

EEG ASSESSMENT IN AUTISM
Multiple neuroimaging studies have demonstrated brain anoma-
lies in autistics compared to healthy controls (McAlonan et al.,
2004; Page et al., 2006). The electroencephalogram (EEG) was one
of the earliest techniques used to investigate the neurobiology of
autism (Minshew, 1991). The recognition of a high instance of
EEG abnormalities and of seizure disorders in the autistic popu-
lation was among the earliest evidence of a biologic basis for the
disorder (Minshew, 1991). Moreover, the EEG is a premiere tool
to assess neural dysfunctions related to autism and seizures due
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to its’ noninvasive nature, availability and utility in detailing these
types of difficulties.

Recent analyses have estimated the prevalence of seizure disor-
ders in autistic series at anywhere from 20 to 46%. Based on recent
analyses, the prevalence of seizure disorders in autistic series is
estimated at about 36% (Danielsson et al., 2005; Hughes and
Melyn, 2005; Hara, 2007; Parmeggiani et al., 2007). In fact, it has
been reported that the autistic population has about 3- to 22-
fold increased risk of developing seizure disorders as compared
to the normal population (Volkmar and Nelson, 1989). Sub-
clinical seizure activity or paroxysmal discharges occur in an even
higher proportion of autistics, but the significance of these remain
uncertain (Hughes and Melyn, 2005; Parmeggiani et al., 2007).
Ray et al. (2007) have suggested that the initial phase of corti-
cal spikes may relate to underlying intracranial foci. Other work
has suggested that EEG spikes may reflect underlying morpho-
logical brain abnormalities (Shelley et al., 2008) and/or metabolic
disturbances (Kobayashi et al., 2006).

In a recent study, Parmeggiani et al. (2010) demonstrated that
in a large inpatient sample 58% of adults with autism aged 20 or
older had experienced epilepsy or a seizure during their lifetime.
For these reasons, experts in the field have recommended the use
of routine and sleep EEGs in the evaluation of autistic disorders,
especially when there has been regression or there are signs of pos-
sible seizures. In fact, seizure detection has been the primary role
of the EEG for decades. When EEG assessment is processed and
analyzed with the most advanced techniques it can be invaluable
for screening for possible seizures, evaluation of autistic disorders,
and assessing the neurophysiological challenges of children with
ASD. While brain structural imaging may reveal interesting find-
ings, assessment of regional brain dysfunction is more revealing
and usually requires functional brain imaging techniques. This
would include techniques such as functional MRI, PET, single
photon emission computed tomography, magnoencephalography
(MEG), and even EEG. Some of these techniques require sedation
or injection of radioactive material so as to make participation
difficult for a typical autistic child. EEG, however, appears to be
the most clinically available and again least invasive of these tech-
niques. Further, it has been found that unique patterns of regional
dysfunction could be discerned through the quantitative analysis
of the EEG.

QUANTITATIVE EEG FINDINGS AND ASD
A review of the existing literature identified 14 studies that
used quantitative techniques to analyze differences in EEG
(QEEG) activity between children with ASD and normal con-
trols with conflicting results. Two studies showed decreased delta
frontally (Dawson et al., 1982; Coben et al., 2008), while one
found increased activity in the delta frequency range (Murias
et al., 2007). Two studies reported increased generalized delta or
described “slowing” (Cantor et al., 1986; Stroganova et al., 2007).
Two studies showed theta increases (Small et al., 1975; Coben
et al., 2008), while one study reported reduced theta (Dawson
et al., 1982). By contrast, findings have been quite consistent
within the alpha through gamma frequency range. All studies
reported reduced alpha power (Dawson et al., 1982; Cantor et al.,
1986) and increased beta (Rossi et al., 1995; Chan and Leung,

2006; Coben et al., 2008) and gamma power (Orekhova et al.,
2006). Multiple studies report a lack of hemispheric differences
in QEEG spectral power in autistic samples compared to findings
of hemispheric differences in normal controls. Autistic children
showed decreased power asymmetry when compared to normal
or mentally handicapped controls (Dawson et al., 1982; Ogawa
et al., 1982). Three studies investigated cortical connectivity in
ASD samples using QEEG coherence measures, with all report-
ing reduced connectivity, especially over longer distances (Cantor
et al., 1986; Lazarev et al., 2004; Coben et al., 2008). One con-
cern has been that sample sizes by and large have not been large
enough to allow for investigation of the observed inconsistencies
in findings reported above.

In the largest study of its’ kind, we (Coben et al., 2013)
included a total of 182 children, 91 on the autistic spectrum
and 91 healthy controls. Findings indicated an absolute delta
deficit over frontal and central brain regions and theta excesses
over frontal, temporal and posterior regions for the ASD sam-
ple. There were significant relative theta excesses over frontal and
temporal regions, alpha and beta excesses over multiple regions.
Interestingly, cluster analytic techniques were used and able to
delineate qeeg subtypes of ASD. Furthermore, a discriminant
function analysis was able to correctly identify ASD children
at a rate of 95%. Despite power subtypes having been shown,
VARETA (di Michele et al., 2005) revealed similar sources of acti-
vation including temporal, posterior cortical and various limbic
regions. These findings raise the likelihood that the study of neu-
ronal networks in autism may lead to a greater understanding
of ASD than localization of brain activity. Power asymmetry and
coherence findings were also significant consistent with evidence
supporting the notion of frontal hypercoherence and anterior to
posterior temporal hypocoherences. These findings suggest that
the brain dysfunction in autistic disorders is often bilateral and
impacts both anterior and posterior axes. Alternatively, one could
view the brain dysfunction in autism as an abnormality in con-
nectivity that disrupts function in multiple regions (Minshew
and Williams, 2007). This would suggest that such connectivity
impairments are prevalent in autistic children. This is consistent
with the findings of Coben et al. (2008). Such an interpreta-
tion is also supported by the literature suggesting that autism is
primarily a disorder of neural connectivity.

AUTISM AS A DISORDER OF NEURAL CONNECTIVITY
There is increasing evidence that the cardinal disruptions in
autism are represented by disruptions in brain connectivity
(Courchesne and Pierce, 2005; Minshew and Williams, 2007;
Mak-Fan et al., 2012). There is mounting evidence of head
enlargement as a result of brain overgrowth early in life (first 1–2
years) (Courchesne et al., 2001, 2003) as a result of enhancements
in frontal white matter and minicolumn pathology (Casanova
et al., 2002; Herbert et al., 2004; Carper and Courchesne, 2005;
Vargas et al., 2005). This overgrowth, then, leads frontal over-
connectivity (Courchesne and Pierce, 2005; Coben and Myers,
2008; Rinaldi et al., 2008) which interferes with the normal devel-
opmental trajectory. This disruption, theoretically, then halts the
natural developmental progression in which anterior to pos-
terior brain regions would enhance their synchronization and
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specialization of fucntions (Damasio, 1989; Supekar et al., 2009).
This pattern, in fact, was observed in our data above showing
frontal hypercoherence and bilateral temporal hypocoherences
(Coben et al., 2013).

Other data support this hypothesis as well. For example, Mak-
Fan et al. (2012) examined changes in diffusivity with age within
frontal, long distant, longitudinal and interhemispheric tracts
across ages 6–14. Their findings showed that while typically devel-
oping controls change and evolve on such measures children with
autism did not. This suggests that such connectivity difficulty
exist and persist in such children. More specifically, frontal and
local (short neuronal paths) hyperconnectivity has been shown to
be present in autistic samples (Wass, 2011; Li et al., 2014). In addi-
tion, there is other recent data showing hypoconnectivity in long
distance and posterior to anterior or temporal regions in autistics.
Isler et al. (2010) have shown low interhemispheric coherence in
visual evoked potentials in such children. Studies of functional
connectivity related to visuospatial processing and the social-
emotional processing networks have also shown reduced connec-
tivity compared to healthy controls (Ameis et al., 2011; McGrath
et al., 2012; von dem Hagen et al., 2013). Similarly, low functional
connectivity has been shown to relate to poor language processing
in autistic children (Kana et al., 2006). Many of these studies used
3-dimensional imaging techniques such as MRI, fMRI or DTI
(diffusion tensor imaging). Interestingly, EEG/QEEG studies of
coherence have shown similar findings. Coben et al. (2013) have
recently shown findings consistent with frontal hypercoherence
and bilateral posterior-temporal hypocoherences. Similarly, high
frontal coherence has been observed in other studies (Coben and
Padolsky, 2007; Murias et al., 2007). In addition, EEG technol-
ogy has been able to demonstrate long range, anterior to posterior
and temporal hypocoherences (Murias et al., 2007; Coben et al.,
2008). All of these coherence findings have been based on mea-
surements between pairs of electrodes. There is reason to believe
that more advanced statistical approaches to EEG coherence may
provide more detailed and accurate information.

PAIRWISE vs. MULTIVARIATE COHERENCE ESTIMATES
Traditionally and historically EEG coherence estimates have
arisen from cross correlations between pairs of electrodes (Bendat
and Piersol, 1980). Such a calculation is often performed within
a given frequency range and is normalized for amplitude or mag-
nitude. As such the following equation serves as the operational
definition:

τ2
xy( f ) =

(
Gxy( f )

)2

(
Gxx( f )Gyy( f )

) (1)

Where: Gxy( f ) = cross power spectral density and
Gxx( f ) and Gyy( f ) = auto power spectral densities
The final normalized coherence value is given by Equation (2):

τ2
xy( f ) = r2

xy + q2
xy

GxxGyy
(2)

Where: r2
xy = real cospectrum and q2

xy = imaginary quadspectra
Gxx( f ) and Gyy( f ) = as in Equation (1)

Phase: 159.1549 tan − 1(q/r)/fc
Where: r and q = as in Eq.2; fc = center frequency of filter
For a more detailed explanation or discussion of these please

see Otnes and Enochson (1972) and Thatcher et al. (1986). These
concepts have been used and applied commonly. In fact, a search
in Google Scholar for “EEG coherence pairs” revealed more than
14,500 citations. While this approach has been commonly used
in the past, there are certain limitations in its application and
accuracy. First, there is a confound in pairwise coherence mea-
surements, namely the notion of electrode distance. It has been
observed that the further the distance between electrodes the
lower their coherence value will be regardless of their functional
connectivity, with distances as long as at least 5 cm. (Nunez,
1994; Nunez and Srivinasan, 2006; Thatcher et al., 2008). Pairwise
coherence measures for nearby electrodes are biased by volume
conduction, to a degree that varies as a function of inter-electrode
distance such that physically closer pairs manifest higher coher-
ence values. While statistical corrections have been offered for
these concerns (Nunez et al., 1997; Barry et al., 2005), multivariate
approaches that may eliminate this problem should be desired.

Other reasons for concern include a vast array of possible
comparisons (171 comparisons in one frequency band), and that
many of these pairs do not correspond to known neuronal path-
ways. Lastly, pairwise coherence estimates are not precise in their
anatomical locations as there is a presumption of a two dimen-
sional and not a 3-dimensional space (Black et al., 2008). It
has further been observed that multivariate strategies to assess
coherence metrics are more accurate and effective than their pair-
wise counterparts (Kus et al., 2004; Barry et al., 2005; Pollonini
et al., 2010). For example, Duffy and Als (2012) used principal
components analysis of coherences (multivariate approach) and
demonstrated the ability to distinguish between children with
autism and neurotypical controls.

MULTIVARIATE APPROACHES TO COHERENCE ANALYSIS
Multivariate, advanced statistics models, have rarely been applied
to the issue of coherence in the autistic brain. With these new
advances in analytic methods it is hoped that we will come closer
to understanding these dynamic phenomena. Hudspeth (1994)
was one of the first to investigate a multifactorial representation
of EEG covariance. He and his students obtained multichannel
EEG data and computed all combinations and similarities and
differences among the waveforms to produce a triangular cor-
relation matrix for each subject. The correlation matrices were
then factored with principal components analysis to obtain three
eigenvectors and the weighting coefficients required to project
each of the waveforms into a 3-dimensional geometric repre-
sentation of the cortical surface of the brain. When processed
in this way, this integration of factored data reduces the redun-
dancy in the EEG waveforms and patterns and correspond to
known neural network pathways. This is the predecessor of Duffy
and Als (2012) with enhanced complexity. The first three prin-
ciple components are summed to create a 3-dimensional rep-
resentation of these multivariate coherences. When EEG data is
represented in this way, the resulting eigenimages reveal similar-
ities and differences across systems in the brain often grouped
together by cortical function or neuronal systems. Deviations
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from these expected relationships points to dysfunctional aspects
of coherence. EEG data is gathered based on the classic 10–20
international system/electrode configuration (Jasper, 1958). In
this system of analysis, these points in space are redrawn in
3-dimensional space based on each locations’ multidimensional
relationship with all other locations based on horizontal, sagittal
and coronal views. As such, connectivity patterns are determined
by the inter-relationships among all combinations of inputs and
are thus considered multivariate or multi-source in nature.

A clinical example of this is now presented below in Figure 1.
This is based on an EEG recording performed with a 12 year old
girl diagnosed with autism with her eyes open and fixed on a
spot directly in front of her. Her most prominent clinical feature
included very limited social skills. The EEG data was consistent
with a mu rhythm (Kuhlman, 1978) that does not suppress to
movement or observation of social scenes (Oberman et al., 2007)
and is, thus, considered indicative of mirror neuron dysfunc-
tion (Oberman et al., 2005). This system of coherence assessment
was created by Hudspeth (2006) and is contained within the
NeuroRep QEEG Software system. The method of calculation
has been described above as these eigen images can be viewed
as an image in 3-dimensional space representing the functional
proximity or coherence among the various electrodes based on
the 10/20 International EEG recording system (Niedermeyer and
Lopes da Silva, 2004). As such, electrode positions that are closer
in proximity reflect greater hypercoherences and electrodes that
are further apparent are indicative of greater hypocoherences. As
may be seen in Figure 1 this analysis reveals a pattern of mixed
hypo and hypercoherences with prefrontal and parietal-posterior
temporal regions being hyperconnected among themselves and
large regions of hypocoherences across much of the right hemi-
sphere but especially from posterior frontal to posterior temporal
regions.

sLORETA FUNCTIONAL CONNECTIVITY
Standardized low-resolution brain electromagnetic tomography
(sLORETA) is a method of probabilistic source estimation of
EEG signals in standardized brain atlas space utilizing a restricted
inverse solution (Pascual-Marqui et al., 1994, 2002). sLORETA

has been used to examine EEG sources in depression (Pizzagalli
et al., 2003), epilepsy (Zumsteg et al., 2006), and evaluating tem-
poral changes associated with differential task specific default net-
work activity (Cannon and Baldwin, 2012). Recently, sLORETA
and fMRI were shown to localize DMN regions with comple-
mentary accuracy (Cannon et al., 2011). Recent statistical and
theoretical advances have led to the use of this technology in the
measurement of source coherences (Pascual-Marqui, 2007).

There has been rigorous discourse over the localization accu-
racy of low-resolution electromagnetic tomography (LORETA)
and its evolution toward standardized low-resolution electro-
magnetic tomography (sLORETA) (Pascual-Marqui et al., 1994;
Pascual-Marqui, 2002). The most important issue at hand for
any EEG localization or functional neuroimaging technique is
the fact that none of these methods localize the “true” source,
rather they model the source with probabilistic techniques. This
includes all methods that utilize statistical/mathematical mod-
eling, including functional magnetic resonance imaging (fMRI)
and magnetoencephalography (MEG) (Knyazev, 2013). Thus,
when using sLORETA in this fashion, we do operate under cer-
tain assumptions/restrictions. First, we are restricted to cortical
gray matter; including the hippocampus and the computations
and source estimations are restricted by geometric constraints.
Additionally, in the most basic sense it would be optimal to
evaluate the source estimates provided by sLORETA to an indi-
vidual’s specific MRI scan, thus we utilize a standardized MRI
from the Montreal Neurological Institute with 6340 5 mm3 voxels
and with it the potential error (Collins et al., 1994). In the local-
ization of EEG sources, recent works have shown the sLORETA
and LORETA methods to improve and even outperform other
methodologies in accuracy (Grech et al., 2008; SaeidiAsl and
Ahmad, 2013) with the addition of regularization parameters.
Additionally, standardized LORETA is not a modification of the
original LORETA, rather it does not utilize the Laplacian operator,
instead it utilizes standardized current density.

Importantly, for this particular single case study we extrap-
olated CSD for each frequency range to enter into bivariate
procedures to compute the person correlation coefficient for the
mean total relative current source density for each of the ROIs

FIGURE 1 | NeuroRep Multivariate Connectivity analyses showing eigen

images in the horizontal place across delta, theta, alpha, and beta

frequencies. Observable features include; (1) right hemisphere (temporal)

hypocoherences across all frequency bands, (2) hypercoherences in the alpha
band over prefrontal regions, and (3) right parietal-posterior temporal
hypercohences in the theta and alpha frequency bands.
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included in this study. For larger sample sizes, each frequency
domain can be analyzed and the results do not correspond to
issues with excessively high correlations in neuroimaging stud-
ies as reported in Vul et al. (2009), rather it appears that task and
subjective mental activity are important to understanding func-
tional coupling that occurs within and between networks in the
human brain (Cannon and Baldwin, 2012). The basis for using
a correlation procedure is that functional relationships between
groups of neurons within the brain can exist, even if the struc-
tural relationships are unknown. We have evaluated the use of
correlations using two neuroimaging methods (sLORETA/fMRI)
with accurate results in the default network (Cannon et al., 2011,
2012). In any experiment utilizing discrete or distributed sources
of the EEG volume conduction is a formidable concern. In short,
volume conduction decreases as a function of distance from a cur-
rent source at zero phase lag; however, if volume conduction is a
problem in any sense then phase lag differences must be near zero
and remain near zero independent of distance (Kauppinen et al.,
1999; Thatcher et al., unpublished manuscript).

The distributed source localization problem and its solution as
computed by sLORETA can be stated as (Pascual-Marqui, 2002;
Liu et al., 2005)

� = KJ + c1 (3)

Where � is an N × 1 vector containing the scalp electric poten-
tials measured from NE electrodes on the scalp, J is a 3M ×
1 vector representing current sources at M locations within the
brain volume, with three orthogonal components per location
and c being a common reference. K is the lead filed matrix repre-
senting the system transfer coefficients from each source to each
measuring point (Pascual-Marqui, 2002). Regularization using
a zero-order Tikhonov-Philips cost function permits a unique
solution to Equation (1) (Hansen, 1994)

min
J

{‖� − KJ‖2 + α ‖J‖2} (4)

Where α is the regularization parameter using the L-curve
method. The source estimation is then derived as

Ĵ = T� (5)

where
T = KT[KKT + αI]−1 (6)

Substituting (3) into (5) yields

Ĵ = TKJ = KT[KKT + αI]−1KJ = RJ (7)

where R is the resolution matrix, defined as

R = KT[KKT + αI]−1K (8)

The resolution matrix illustrates a map from the authentic source
activity to the estimated activity, with R being an identity matrix.
Thus, the basic functional concept of sLORETA is to normalize
the estimation using a block-by-block inverse of the resolution
matrix using (8)

Ĵ
T
l (Rll) − 1Ĵl (9)

where Ĵl is a 3 × 1 vector of the source estimate at the lth voxel and
Rll is a 3 × 3 matrixcontaining the lth diagonal block of the reso-
lution matrix. sLORETA was shown to give the best performance
in terms of localization error and ghost sources, with different
noise levels (Grech et al., 2008).

METHODS
A region of interest (ROI) file with the MNI coordinates for the
15 seed points for the center voxel within Brodmann Area (BA)
regions was constructed (see Table 1). These ROIs were selected
apriori based on their known involvement in the mirror neuron
system and social perceptual networks. Each of the ROI values
consisted of the mean current source density from each ROI seed

Table 1 | ROIs for this study: in the table from left to right are the x, y, and z MNI coordinates for center voxel, Lobe, structural nomenclature

and Brodmann Area.

X-MNI Y-MNI Z-MNI Lobe Structure Brodmann area

50 20 15 Frontal lobe Inferior frontal gyrus 45

30 25 −15 Frontal lobe Inferior frontal gyrus 47

45 35 20 Frontal lobe Middle frontal gyrus 46

25 55 5 Frontal lobe Superior frontal gyrus 10

20 45 −20 Frontal lobe Superior frontal gyrus 11

40 −5 10 Sub-lobar Insula 13

25 −75 10 Occipital lobe Cuneus 30

45 −20 −30 Temporal lobe Fusiform gyrus 20

5 −45 25 Limbic lobe Posterior cingulate 23

0 20 20 Limbic lobe Anterior cingulate 33

20 −10 −25 Limbic lobe Parahippocampal gyrus 28

10 −50 35 Parietal lobe Precuneus 31

5 30 20 Limbic lobe Anterior cingulate 24

45 −55 −15 Temporal lobe Fusiform gyrus 37

40 15 −30 Temporal lobe Superior temporal gyrus 38
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Table 2 | Results for the sLORETA correlation analyses.

Correlations

BA45 BA47 BA46 BA10 BA11 BA13 BA30 BA20 BA23 BA33 BA28 BA31 BA24 BA37 BA38

BA45 Pearson correlation 1 0.584 0.940 0.381 0.358 0.977* 0.553 0.922 0.782 0.547 0.712 0.927 0.531 0.802 0.607
Sig. (2-tailed) 0.416 0.060 0.619 0.642 0.023 0.447 0.078 0.218 0.453 0.288 0.073 0.469 0.198 0.393
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BA47 Pearson correlation 0.584 1 0.817 0.968* 0.967* 0.413 0.909 0.728 0.910 0.883 0.976* 0.804 0.889 0.739 0.993**

Sig. (2-tailed) 0.416 0.183 0.032 0.033 0.587 0.091 0.272 0.090 0.117 0.024 0.196 0.111 0.261 0.007
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BA46 Pearson correlation 0.940 0.817 1 0.670 0.644 0.848 0.723 0.918 0.896 0.783 0.886 0.962* 0.773 0.823 0.820
Sig. (2-tailed) 0.060 0.183 0.330 0.356 0.152 0.277 0.082 0.104 0.217 0.114 0.038 0.227 0.177 0.180
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BA10 Pearson correlation 0.381 0.968* 0.670 1 0.994** 0.185 0.829 0.533 0.781 0.896 0.891 0.630 0.906 0.559 0.941
Sig. (2-tailed) 0.619 0.032 0.330 0.006 0.815 0.171 0.467 0.219 0.104 0.109 0.370 0.094 0.441 0.059
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BA11 Pearson correlation 0.358 0.967* 0.644 0.994** 1 0.167 0.871 0.546 0.800 0.845 0.898 0.633 0.858 0.597 0.951*

Sig. (2-tailed) 0.642 0.033 0.356 0.006 0.833 0.129 0.454 0.200 0.155 0.102 0.367 0.142 0.403 0.049
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BA13 Pearson correlation 0.977* 0.413 0.848 0.185 0.167 1 0.434 0.882 0.678 0.361 0.572 0.858 0.342 0.760 0.450
Sig. (2-tailed) 0.023 0.587 0.152 0.815 0.833 0.566 0.118 0.322 0.639 0.428 0.142 0.658 0.240 0.550
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BA30 Pearson correlation 0.553 0.909 0.723 0.829 0.871 0.434 1 0.806 0.951* 0.609 0.946 0.826 0.619 0.890 0.952*

Sig. (2-tailed) 0.447 0.091 0.277 0.171 0.129 0.566 0.194 0.049 0.391 0.054 0.174 0.381 0.110 0.048
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BA20 Pearson correlation 0.922 0.728 0.918 0.533 0.546 0.882 0.806 1 0.937 0.522 0.858 0.989* 0.515 0.970* 0.779
Sig. (2-tailed) 0.078 0.272 0.082 0.467 0.454 0.118 0.194 0.063 0.478 0.142 0.011 0.485 0.030 0.221
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BA23 Pearson correlation 0.782 0.910 0.896 0.781 0.800 0.678 0.951* 0.937 1 0.685 0.978* 0.958* 0.686 0.951* 0.946
Sig. (2-tailed) 0.218 0.090 0.104 0.219 0.200 0.322 0.049 0.063 0.315 0.022 0.042 0.314 0.049 0.054
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BA33 Pearson correlation 0.547 0.883 0.783 0.896 0.845 0.361 0.609 0.522 0.685 1 0.807 0.642 1000** 0.439 0.824
Sig. (2-tailed) 0.453 0.117 0.217 0.104 0.155 0.639 0.391 0.478 0.315 0.193 0.358 0.000 0.561 0.176
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BA28 Pearson correlation 0.712 0.976* 0.886 0.891 0.898 0.572 0.946 0.858 0.978* 0.807 1 0.908 0.810 0.866 0.990*

Sig. (2-tailed) 0.288 0.024 0.114 0.109 0.102 0.428 0.054 0.142 0.022 0.193 0.092 0.190 0.134 0.010
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BA31 Pearson correlation 0.927 0.804 0.962* 0.630 0.633 0.858 0.826 0.989* 0.958* 0.642 0.908 1 0.635 0.946 0.839
Sig. (2-tailed) 0.073 0.196 0.038 0.370 0.367 0.142 0.174 0.011 0.042 0.358 0.092 0.365 0.054 0.161
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BA24 Pearson correlation 0.531 0.889 0.773 0.906 0.858 0.342 0.619 0.515 0.686 1000** 0.810 0.635 1 0.437 0.830
Sig. (2-tailed) 0.469 0.111 0.227 0.094 0.142 0.658 0.381 0.485 0.314 0.000 0.190 0.365 0.563 0.170
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BA37 Pearson correlation 0.802 0.739 0.823 0.559 0.597 0.760 0.890 0.970* 0.951* 0.439 0.866 0.946 0.437 1 0.807
Sig. (2-tailed) 0.198 0.261 0.177 0.441 0.403 0.240 0.110 0.030 0.049 0.561 0.134 0.054 0.563 0.193
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BA38 Pearson correlation 0.607 0.993** 0.820 0.941 0.951* 0.450 0.952* 0.779 0.946 0.824 0.990* 0.839 0.830 0.807 1
Sig. (2-tailed) 0.393 0.007 0.180 0.059 0.049 0.550 0.048 0.221 0.054 0.176 0.010 0.161 0.170 0.193
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

*Correlation is significant at the 0.05 level (2-tailed).
**Correlation is significant at the 0.01 level (2-tailed).
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and one single voxel (its nearest neighbor) for total voxel size
10 mm. The resulting file produced the average current source
density for each frequency domain across multiple EEG segments
for all subjects for each seed (ROI). The CSD data for each fre-
quency band were organized into Microsoft Excel spreadsheets
and then entered into SPSS 19 for analysis. sLORETA images cor-
responding to the estimated neuronal generators of brain activity
within each given frequency range were calculated (Frei et al.,
2001). This procedure resulted in one 3D sLORETA image for
this single subject for each frequency range. We entered each fre-
quency domain into the analysis for an N of 4 (delta 0.5–4.0 Hz;
theta 4–8 Hz; alpha 8–12 Hz, and beta 12–32 Hz). The sequence of
steps involved in generating the sLoreta source coherence image is
presented in Figure 2.

The findings for this same case as described above are pre-
sented in Figure 3. The most apparent findings from this analysis
seem to be regions that are overconnected with each other and
that these regions often involve close neighbors or regions of close
proximity (see Table 2). These include most profoundly regions
of the anterior cingulate that are completely (R = 1.0) hyper-
connected to each other and not to any other ROI. ROIs in and
around the right frontal lobe (11, 10, 46, 47) also seem to form
a loop of highly connected activity while their connections to
other regions are quite limited. The fusiform gyrus is highly con-
nected to the posterior cingulate and pre-cuneus, but again not to
other ROIs. What is missing is a link between the fusiform gyrus,
superior temporal gyrus, insula and inferior frontal regions that

forms the social perceptual system (Pelphrey et al., 2004). This
important neuronal system appears to be underconnected in this
case.

EFFECTIVE CONNECTIVITY AS MEASURED BY GRANGER
CAUSALITY
One of the critiques of other coherence methods has been that
they are largely based on the concept of correlation or similarity.
Even sLORETA coherence is still the similarity between sources
of EEG activity. An advanced statistical technique for investi-
gated directed causation that uses multiple autoregressive analyses
is Granger causality and it’s related concepts of partial directed
coherences (Seth, 2010). Granger causality analysis (GCA) is a
method for investigating whether one time series can correctly
forecast another (Bressler and Seth, 2010). Granger causality
(GC) is a data-driven approach based on linear regressive mod-
els and requires only a few basic assumptions about the original
data statistics. Recently in neuroscience applications, GC has been
used to explore causal dependencies between brain regions by
investigating directed information flow or causality in the brain. It
uses the error prediction of autoregressive (AR) or multi-variant
autoregressive (MAR) models to estimate if a brain process is a
Granger-cause of another brain process.

METHODS
To perform such an analysis on this same EEG data stream as
used in the two examples above, we utilized the SIFT (Source

FIGURE 2 | Procedure to examine the associations between the center

voxel within a specified Brodmann Area (BA) and its nearest neighbor

(10 mm3). Listed in the figure from top to bottom are the steps used to
process EEG data and create the correlation maps between regions of
interest (ROIS). In short, EEG data must be processed first with careful

attention given to artifact contamination and its potential influence across all
steps of the sLORETA procedures. The next step is to create the sLORETA
files in order to extract the CSD at specified ROIs. Finally, using any statistical
program the correlations between the ROID, or networks of interest can be
contrasted for functional associations.
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FIGURE 3 | Each of the 15 ROIs for this case study are represented in a

different color. The lines indicate significant correlations between the
colored ROI and other regions. The color of the line is the same as the ROI
in relation to its functional connectivity with other ROIs.

Information Flow Toolbox) toolbox from EEGLAB v.12 (Delorme
et al., 2011). A key aspect of SIFT is that it focuses on esti-
mating and visualizing multivariate effective connectivity in the
source domain rather than between scalp electrode signals. This
should allow us to achieve finer spatial localization of the net-
work components while minimizing the challenging signal pro-
cessing confounds produced by broad volume conduction from
“neural” sources to the scalp electrodes. From our eyes open
resting EEG data we have virtually epoched this stream into
1-s segments. Independent Component Analysis was then used
to extract unique, independent components from the data. To
fit multiple component dipoles and determine their locations
DIPFIT toolbox was then applied. Then by investigating the
dipole locations and the components topographical maps, only
good “neural” components that are related to neural process in
the brain have been included for further processing. These data
were then fit into a MAR model using Vieira-Morf algorithm.
For our data the model and after some trials and errors and
model validation process, the MAR model order has been set to
5. In addition, the frequency band of interest has been selected
from 1 to 30 Hz and the most obvious connectivity measure was
Grager-Geweke Causality (GGC).

These methods of operation are summarized in Figure 4. This
takes the EEG data from sensory to source space via indepen-
dent component analysis and dipole localization. This diminishes
the issue of volume conduction (see Astolfi et al., 2007; Akalin
Acar and Makeig, 2013). Once dipole localization has been per-
formed, these data are subjected to MVAR and Granger Causality

(GC) analysis as presented above. Within a reasonable range of
values, changes in model order may show little effect on the spec-
tral density (and by extension coherence) (e.g., see Florian and
Pfurtscheller, 1995). Our model order has been based on Akaike
Information Criterion (AIC) and Bayesian Information Criterion
(BIC) criteria to maximize model effects. Statistically, the criti-
cal issue for GC is the ratio between the number of independent
observations (i.e., samples) and the model complexity (i.e., num-
ber of parameters). If the number of observations is large relative
to the number of parameters then the model order selection cri-
teria are still valid. If the number of observations is small, then
we might run into problems with AIC and other asymptotic
estimators, but there are corrections for that (corrected akaike
information criterion). In our data set (case epoching), we have
plenty of data available and the ratio of observations [total data
samples within a time window (x trials)] to parameters is >40
suggesting that we have a valid model using AIC (Burnham,
2004).

RESULTS
Our findings for this case are presented in Figure 5. This, again
demonstrates regions of over and under-connectivity. There
appear to be several regions of heightened causality whose major
influence is only toward close neighbors. This includes regions
of the prefrontal cortex, anterior cingulate, and bilateral inferior
parietal lobules. In each instance, these regions are somewhat iso-
lated from each other and other important ICs as well. What
is also clear is that there are long connections throughout the
right hemisphere that are largely under-connected. These span as
far away as the cuneus to the inferior frontal gyrus and include
regions of the temporal lobes and underlying areas such as the
fusiform gyrus and superior temporal gyrus.

COMPARISON OF COHERENCE TECHNIQUES
While it has not been shown, a pairwise coherence analysis of
this case has shown very few significant coherence anomalies. The
ones that are present include frontal hypocoherence and bilateral
occipital-temporal hypocoherences. This is the opposite of what
is shown in the multivariate analyses. All forms of multivariate
analysis shown have suggested a combination of local hyperco-
herence and long distance hypocoherence across right frontal to
posterior temporolimbic regions. This, in this case, clearly shows
a difference between pairwise and multivariate estimates.

Comparing these to know structural connectivity was pos-
sible in this case in the form of MR-DTI analysis within this
same system of concern (mirror neuron system). This suggests
the presence of prefrontal and anterior cingulate hyperconnectiv-
ity and dramatic hypoconnectivity from frontal to temporolimbic
regions. Comparing this to the multivariate analyses is interesting
as there is similarity across all of these. The resemblance of these
measures of functional connectivity to the reality of structural
connectivity in this case is seen in its’ greatest detail in multi-
variate measures that localize to source space (sLoreta, SIFT GC).
As such, one limitation of the first method (Hudspeth NREP) is
that it does not source localize activit prior to generating eigenim-
ages of sensory covariances. GC has certain possible advantages
including measuring the degree, directionality of connectivity,
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FIGURE 4 | SIFT/Granger (GGC) causality sequence of processing.

FIGURE 5 | SIFT/Granger (GGC) causality brain image. Levels of greater connectivity are shown with thicker lines and brighter colors. Direction of causality
is indicated by the key in the upper left hand corner. ICs and their localization are listed as part of Table 3.

reciprocal influences and localization to regions that are deeper
than is possible with sLoreta. It should be recalled that these
observations are based on theory and one a single case study.
Clearly, much more research is needed in this area of study.

DISCUSSION
Neuroimaging technologies and research has shown that autism is
largely a disorder of neuronal connectivity. While advanced work

is being done with fMRI, MRI-DTI, SPECT and other forms of
structural and functional connectivity analyses, the use of EEG
for these purposes is of additional great utility. Cantor et al.
(1986) were the first to examine the utility of pairwise coher-
ence measures for depicting connectivity impairments in autism.
Since that time research has shown a combination of mixed over
and under-connectivity that is at the heart of the primary symp-
toms of this multifaceted disorder. Nevertheless, there is reason
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Table 3 | SIFT/GCC maximal values between ICs.

From

To

1 2 3 5 8 9 10 15 18 19

1 0.57 0.50 0.59 0.21 0.22 0.89 0.14 0.36 0.12

2 0.36 0.49 1.51 0.26 0.10 0.50 0.15 0.11 0.28

3 0.04 1.09 0.15 0.52 0.1 0.28 0.10 0.24 0.80

5 0.85 1.31 0.39 0.13 0.09 0.34 0.31 0.05 0.84

8 0.61 0.51 0.82 0.2 0.38 0.99 0.29 1.04 0.13

9 0.24 0.29 0.24 0.08 0.28 0.48 1.22 0.29 0.17

10 1.35 0.35 0.46 0.19 0.72 0.19 0.38 0.92 0.48

15 0.30 0.26 0.41 0.11 0.34 1.07 0.87 0.30 0.15

18 0.39 0.08 0.74 0.11 1.18 0.26 1.87 0.17 0.29

19 0.40 0.66 2.08 2.39 0.31 0.19 1.32 0.18 0.72

Independent components included: 1 (Brodmann area (BA) 32; Anterior

Cingulate), 2 (BA 10; Middle Frontal Gyrus), 3 (BA 40; Inferior Parietal Lobule),

5 (BA 10; Middle Frontal Gyrus), 8 (BA 37; Fusiform Gyrus), 9 (BA 19; Lingual

Gyrus), 10 (BA 40; Inferior Parietal Lobule), 15 (BA 22; Superior Temporal Gyrus),

18 (BA 18; Cuneus), and 19 (BA 10; Middle Frontal Gyrus).

to believe that these simplistic pairwise measurements under rep-
resent the true and quite complicated picture of connectivity
anomalies in these persons. We have presented three different
forms of multivariate connectivity analysis with increasing levels
of sophistication. These all seem able to capture the complex-
ity of such cases and certainly moreso than pairwise estimates
have. There does appear to be a value in using measures that
localize the source of EEG activity and judge coherence from
these sources. Further, the promise of using MVAR advanced sta-
tistical methods to judge effective connectivity and causation is
exciting.

Clearly, there is much work to be done to further the scientific
underpinnings of these approaches. Future work should extend
these forms of analysis to greater sample sizes of autistic children
and adults to judge their validity and utility. Comparing findings
from autistics to other diagnostic and typically developing sam-
ples will be crucial. Lastly, the true value of any form of assessment
for autistic children may be in it’s applicability to further treat-
ment outcomes for these children. Coben (2013) has shown that
such metrics may be used to engineer more effective treatment
plans than traditional neurofeedback with impressive outcomes
as a result. It is hoped that advancements with such assessment
techniques will further sharpen such treatment successes and
decrease durations of treatment.
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